Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois, June 1993

By RICHARD F. DUWELIUS, ROBERT T. KAY, and SCOTT T. PRINOS

Prepared in cooperation with the U.S. ENVIRONMENTAL PROTECTION AGENCY

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations Report 95-4244

Indianapolis, Indiana Urbana, Illinois 1996

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information, write to:

District Chief

. . . .

District Chief

U.S. Geological Survey

U.S. Geological Survey

Water Resources Division 5957 Lakeside Boulevard

Water Resources Division

5957 Lakeside Boulevard

221 N. Broadway Avenue Urbana, IL 61801

Indianapolis, IN 46278-1996

Copies of this report can be purchased from:
U.S. Geological Survey
Branch of Information Services
Box 25286
Denver, CO 80225-0286

CONTENTS

Abstract	
Introduction	
Purpose and Scope	
Acknowledgments	
Description of Calumet Region	
Physiography and Climate	
Geology	
Hydrology	
Methods of Study	
Sample Collection and Analysis	
Quality Assurance	1
Onsite Procedures	1
Laboratory Procedures	1
U.S. Environmental Protection Agency Quality-Assurance Review	
Ground-Water Quality	1:
Onsite Measurements	1
Water Temperature	1
pH	1
Oxidation-Reduction Potential	1
Dissolved Oxygen	1.
ve	1
Specific Conductance	
Laboratory Analyses	1°
Water-Quality Properties and Common Ions	
Acidity and Alkalinity	2
Ammonia Nitrogen	2
Calcium	3
Chloride	3
Dissolved Solids	3
Iron	3
Magnesium	3
Manganese	
Potassium	
Silica	3:
Sodium	3:
Sulfate	3.
Suspended Solids.	3
Total Organic Carbon	3
Trace Elements and Cyanide	3
Aluminum	3
Antimony	3′
Arsenic	3
Barium	37

CONTENTS—Continued

		Beryllium	38
		Cadmium	38
		Chromium	38
		Cobalt	38
		Copper	39
		Cyanide	39
		Lead	39
		Mercury	39
		Nickel	40
		Selenium	40
		Silver	41
		Thallium	41
		Vanadium	41
		Zinc	41
		Volatile Organic Compounds	42
		Semivolatile Organic Compounds	47
		Compounds Containing Pesticides or Polychlorinated Biphenyls	53
Co	ompa	risons of Ground-Water Quality in the Study Area	55
Summar	у		62
Referen	ces C	ited	64
Appendi	ix 1:	Selected Characteristics of Wells	67
Appendi	ix 2:	Quality-Assurance Data	73
Appendi	ix 3:	Water-Quality Data	101
FIGUR	ES	ı	
1-3.	_	s showing:	
	1.	Calumet Region in northwestern Indiana and northeastern Illinois	4
	2.	Generalized surficial geology and locations of wells sampled in the Calumet Region,	
		Indiana and Illinois, June 1993	6
	3.	Specific conductance of water from shallow wells in the Calumet Region, Indiana and Illinois, June 1993	20
4-7	Grai	ohs showing:	
. /,	4.	Principal ion chemistry of water from wells in the Calumet aquifer in the Calumet Region,	
	٦.	Indiana and Illinois, June 1993	22
	5.	Principal ion chemistry of water from wells in the confining unit in the Calumet Region, Indiana and Illinois, June 1993	23
	6.	Principal ion chemistry of water from wells in confined-sand aquifers in the Calumet Region, Indiana and Illinois, June 1993	25
	7.	Principal ion chemistry of water from wells in the Silurian-Devonian aquifer in the Calumet Region, Indiana and Illinois, June 1993	26

CONTENTS—Continued

FIGURES-CONTINUED

8-1	l2. Map	s showing:	
		Distribution of trace elements in ground water in the Calumet Region, Indiana and Illinois, June 1993	3
		Distribution of target volatile organic compounds in ground water in the Calumet Region, Indiana and Illinois, June 1993	4
		Distribution of target semivolatile organic compounds in ground water in the Calumet Region, Indiana and Illinois, June 1993	4
		Distribution of pesticide compounds in ground water in the Calumet Region, Indiana and Illinois, June 1993	5
		Locations of wells in the Calumet Region, Indiana and Illinois, producing water in which Maximum Contaminant Levels were exceeded in June 1993	6
TABL	.ES		
1.		ed characteristics of wells from which water samples were collected in the Calumet Region, na and Illinois, June 1993	6
2.	•	le container, preparation, and preservation requirements for ground-water samples collected Calumet Region, Indiana and Illinois, June 1993	1
3.		-quality properties and concentrations of common ions in sampling-device blanks collected Calumet Region, Indiana and Illinois, June 1993	7
4.		entrations of trace elements and cyanide in sampling-device blanks collected in the Calumet n, Indiana and Illinois, June 1993	7
5.		entrations of target volatile organic compounds in sampling-device blanks and trip blanks ted in the Calumet Region, Indiana and Illinois, June 1993	7
6.		entrations of target semivolatile organic compounds in sampling-device blanks collected in the net Region, Indiana and Illinois, June 1993	7
7.		entrations of compounds containing pesticides or polychlorinated biphenyls in sampling-device s collected in the Calumet Region, Indiana and Illinois, June 1993	8
8.		-quality properties and concentrations of common ions in duplicate samples collected in the net Region, Indiana and Illinois, June 1993	8
9.		entrations of trace elements and cyanide in duplicate samples collected in the Calumet Region, and Illinois, June 1993	8
10.		entrations of target volatile organic compounds in duplicate samples collected in the Calumet n, Indiana and Illinois, June 1993	8
11.		entrations of target semivolatile organic compounds in duplicate samples collected in the net Region, Indiana and Illinois, June 1993	9
12.		entrations of compounds containing pesticides or polychlorinated biphenyls in duplicate es collected in the Calumet Region, Indiana and Illinois, June 1993	9'
13.	Statist	ical summary of relative percent differences for analytes detected in both the sample and the	1

CONTENTS—Continued

TABLES-CONTINUED

14.	Date and time of sample and onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993
15.	Statistical summary of onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993
16.	Water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
17.	Statistical summary of water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
18.	Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
19.	Maximum Contaminant Levels and Secondary Maximum Contaminant Levels for selected trace elements and cyanide and summary of detections in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
20.	Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
21.	Concentrations of tentatively identified volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
22.	Maximum Contaminant Levels for volatile organic compounds and summary of detections in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
23.	Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
24.	Concentrations of tentatively identified semivolatile organic compounds and molecular sulfur in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993 166
25.	Maximum Contaminant Levels for semivolatile organic compounds and summary of detections in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
26.	Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
27.	Maximum Contaminant Levels for compounds containing pesticides or polychlorinated biphenyls and summary of detections in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993
28.	Statistical summary of water quality for 10 shallow wells in Porter County selected to represent natural ground-water quality in the Calumet Region, Indiana and Illinois, June 1993

CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATIONS

Multiply	Ву	To obtain	
foot (ft)	0.3048	meter	
inch (in.)	25.4	millimeter	
acre	4,047	square meter	
square mile (mi ²)	2.590	square kilometer	
quart	1.057	liter	
gallon (gal)	3.785	liter	

Degree Celsius (°C) can be converted to degree Fahrenheit (°F) by use of the following equation: $F^{\circ} = (1.8 \text{ C}^{\circ}) + 32$

Abbreviated water-quality units used in this report: Chemical concentrations and water temperature are given in metric units. Chemical concentration is given in milligrams per liter (mg/L) or micrograms per liter (µg/L). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) a geodetic datum derived from general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

The following abbreviations are used in this report:

F	
CLP	Contract Laboratory Program
DO	dissolved oxygen
Eh	oxidation-reduction potential
MCL	Maximum Contaminant Level
mv	millivolt
PCB	polychlorinated biphenyl
pН	negative log base-10 of the hydrogen ion activity,
	in moles per liter
<i>p,p</i> ′ -DDD	dichlorodiphenyldichloroethane
<i>p,p'</i> -DDE	dichlorodiphenylethane
<i>p,p'</i> -DDT	dichlorodiphenyltrichloroethane
PTFE	polytetrafluoroethylene
RPD	relative percent difference
SC	specific conductance
SMCL	Secondary Maximum Contaminant Level
SVOC	semivolatile organic compound
TOC	total organic carbon
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
VOC	volatile organic compound
mg/L	milligram per liter (equal to one part per million)
μg/L	microgram per liter (equal to one part per billion)
μS/cm	microsiemens per centimeter at 25° Celsius

Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois, June 1993

By Richard F. Duwelius, Robert T. Kay, and Scott T. Prinos

ABSTRACT

Water samples were collected from 128 wells in a large industrial and urban area in northwestern Indiana and northeastern Illinois during June 1993. Samples were collected from wells completed in one of four geohydrologic units: a surficial sand aquifer (Calumet aquifer), a clay confining unit, confined sand aguifers, and a carbonate-bedrock aguifer (Silurian-Devonian aquifer). Samples were analyzed by U.S. Environmental Protection Agency contract laboratories for selected water-quality properties, common ions, trace elements, volatile and semivolatile organic compounds, pesticides, and polychlorinated biphenyls. Onsite measurements of water temperature, pH, oxidation-reduction potential, dissolved oxygen, and specific conductance were made during sample collection.

Water from wells in the Silurian-Devonian aquifer is predominantly a sodium bicarbonate type. Water types in confined sand aquifers and the confining unit are varied. Water types from wells in the Calumet aquifer also are varied, although approximately 42 percent of the wells in this geohydrologic unit produced water in which calcium and bicarbonate were the dominant cation-anion pair. Samples from several shallow wells in the

confining unit and the Calumet aquifer, and one well in a confined sand aquifer, were classified as sodium chloride-type water.

The largest concentrations of trace elements and organic compounds were detected in samples from wells located in or near industrial areas or areas of waste disposal. A total of 14 volatile organic compounds and 23 semivolatile organic compounds on the U.S. Environmental Protection Agency's target compound list was detected in 20 and 56 samples. A total of 18 pesticide compounds was detected in 29 samples. Compounds containing polychlorinated biphenyls were detected in three samples.

INTRODUCTION

The U.S. Environmental Protection Agency (USEPA), Region 5, and the U.S. Geological Survey (USGS) are cooperating on a series of geohydrologic studies in an area of northwestern Indiana and northeastern Illinois. This area, known as the Calumet Region (Moore, 1959), is located along the southern shore of Lake Michigan, which provides access to shipping routes, enabling construction of large-scale industrial facilities including steel mills, petrochemical refineries, and heavy manufacturing companies.

Much of the Calumet Region is underlain by a relatively thin (less than 65 ft thick), but areally extensive, surficial sand aquifer known as the Calumet aquifer (Watson and others, 1989, p. 1). Flow in this aquifer is generally toward the major streams, some of which flow into Lake Michigan. The quality of water in the Calumet aquifer is of concern to Federal, State, and local environmental agencies because of the potential for contamination from anthropogenic sources and the potential for discharge of those contaminants to Lake Michigan.

More than 100 sites in the study area have been subject to investigation and regulation by environmental agencies (Watson and others, 1989, p. 2; Roadcap and Kelly, 1994, p. 28). At least seven sites are on the National Priority List for environmental cleanup by the USEPA. In 1991, the USEPA designated the Calumet Region as part of a Geographic Enforcement Initiative Area. By this designation, the USEPA recognized the importance of a regional approach to understanding ground-water flow and quality in the Calumet Region.

In 1992, the USGS measured ground-water levels in the Calumet Region in order to map water levels and describe regional ground-water flow. That investigation, reported by Kay and others (1996) was the first cooperative effort by the USEPA and USGS to study ground water in the Calumet Region. During June 1993, the USGS collected samples of ground water in the Calumet Region. The results of this second study, reported here, are used to describe regional ground-water quality.

Purpose and Scope

This report describes regional ground-water quality in the Calumet Region of northwestern Indiana and northeastern Illinois on the basis of results from chemical analyses of water samples collected from 128 wells during June 1993. Each well is screened in one of four geohydrologic units: the surficial sand aquifer (Calumet aquifer), the clay confining unit, confined sand aquifers, or the carbonate-bedrock (Silurian-Devonian) aquifer. Samples were analyzed for general water-quality properties, common ions, trace elements, volatile

and semivolatile organic compounds, pesticides and polychlorinated biphenyls. Results are listed in tables and described with summary statistics. Selected results are plotted on maps and graphs to describe the chemical and the spatial variability of ground-water quality in the study area. Comparisons of water quality are made among the four geohydrologic units, between analyte concentrations and USEPA standards for drinking water, and between the less industrialized and less urbanized eastern part of the study area and the more industrialized and more urbanized western part.

Acknowledgments

The authors gratefully acknowledge the assistance of the following municipal, corporate, and private entities that allowed access to their properties for the collection of data for this report:

Archdiocese of Chicago

Chicago State University

City of Burnham, Ill.

City of Chicago, Ill.

City of East Chicago, Ind.

City of Gary, Ind.

City of Hammond, Ind.

City of Whiting, Ind.

E.I. DuPont DeNemours & Co., East Chicago, Ind.

Illinois Department of Conservation

Illinois State Water Survey

Inland Steel Corporation, East Chicago, Ind.

Lehigh Portland Cement Company, Gary, Ind.

Metropolitan Water Reclamation District of Greater Chicago

National Park Service, Indiana Dunes National Lakeshore

Northern Indiana Public Service Company, Merrillville, Ind.

U.S. Army Corps of Engineers
United States Steel, USX Corporation,
Gary, Ind.

DESCRIPTION OF CALUMET REGION

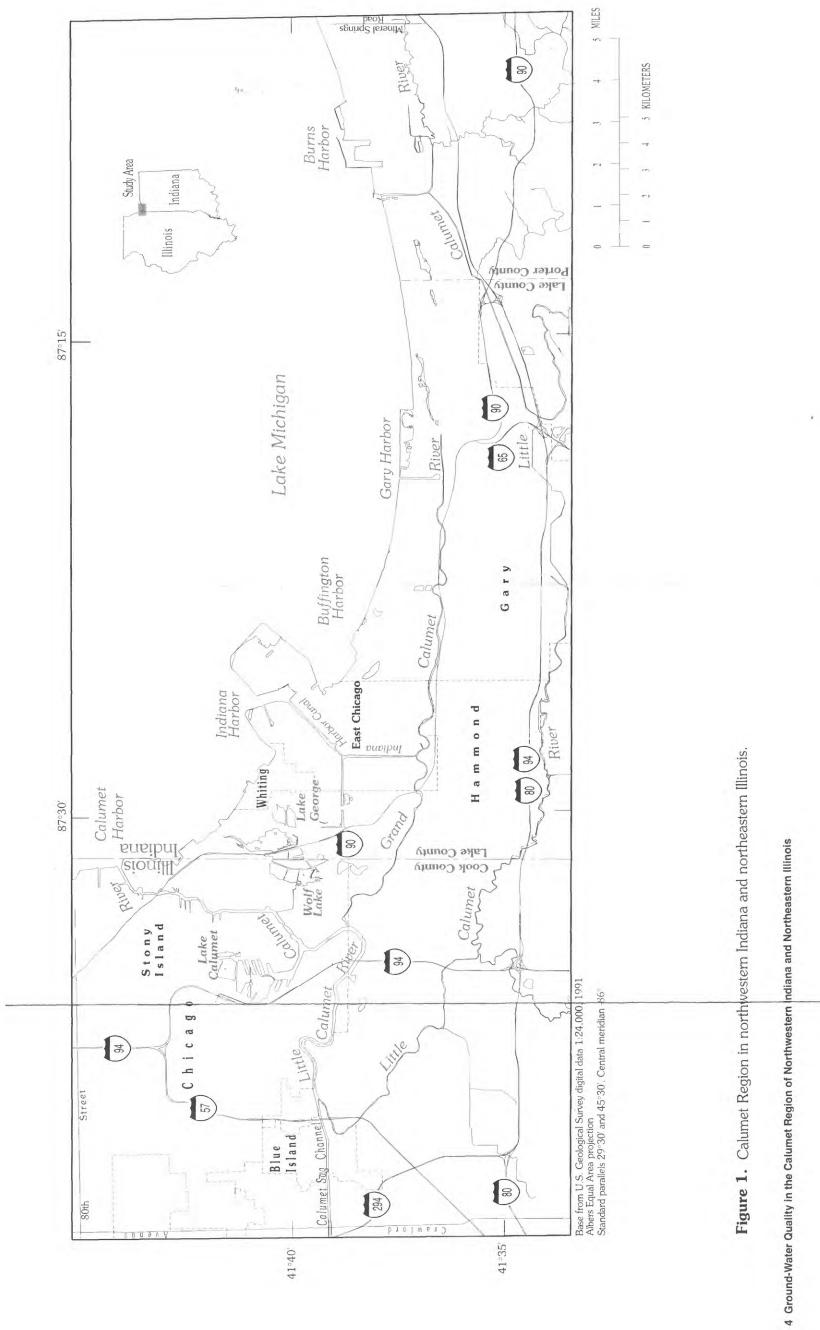
The Calumet Region of northwestern Indiana and northeastern Illinois is the area encompassing the Calumet River system in Indiana and Illinois and Lake Calumet in Illinois. The approximately 240-mi² area of this study includes northwestern Porter County and northern Lake County in Indiana and southern Cook County in Illinois (fig. 1). The area is bounded by Lake Michigan and 80th Street on the north, the southern extent of the Little Calumet River and Interstate 80 on the south, Mineral Springs Road on the east, and Crawford Avenue on the west. Principal cities included in the study area are East Chicago, Gary, Hammond, and Whiting in Indiana and the southeastern part of Chicago in Illinois.

Land use in the Calumet Region is primarily residential and industrial (Kay and others, 1996). Large tracts of land along Lake Michigan and the Calumet River are used for steel production. Land used for the refining and storing of petrochemicals is located primarily near the Indiana Harbor Canal and at scattered locations along the Grand Calumet River, the Calumet Sag Channel, and near Lake Calumet. Numerous other industries in the study area include railcar, truck, and automobile assembly; scrap processing; and chemical manufacturing. Most of these are along and north of the Grand Calumet River in Indiana, along the Calumet River and Calumet Sag Channel, and near Lake Calumet in Illinois. The area south of the Grand Calumet River and areas north and west of Lake Calumet are primarily residential but include land for small industry, commercial, waste disposal, and recreational uses. Large areas used for treatment and disposal of wastes are located around Lake Calumet. The largest natural areas are in the eastern part of the study area.

Physiography and Climate

The study area is in the Eastern Lake Section of the Central Lowland Physiographic Province defined by Fenneman (1938). The Indiana part of

the study area is in the Calumet Lacustrine Plain subdivision of the Northern Moraine and Lake Region defined by the Indiana Geological Survey (Malott, 1922, p. 113; Schneider, 1966, p. 50). The Calumet Lacustrine Plain extends westward into Illinois, where it is called the Chicago Lake Plain subsection of the Great Lakes Section by the Illinois State Geological Survey (Leighton and others, 1948, p. 21). This plain, which represents the former location of glacial Lake Chicago, is characterized by a flat to undulating surface that slopes gently toward Lake Michigan. Land-surface altitudes on the lake plain range from about 640 ft above sea level along the northern edge of the Valparaiso Moraine (south of the study area) to about 580 ft above sea level, the approximate stage of Lake Michigan.


The climate in the study area is classified as temperate continental. The mean annual temperature is about 10°C and the mean annual precipitation is about 35.7 in. (National Oceanic and Atmospheric Administration, 1982). More than half of the average annual precipitation falls from April through August. Although great variations in precipitation and temperature may occur during any year, summers are generally hot and humid, and winters are cold.

Geology

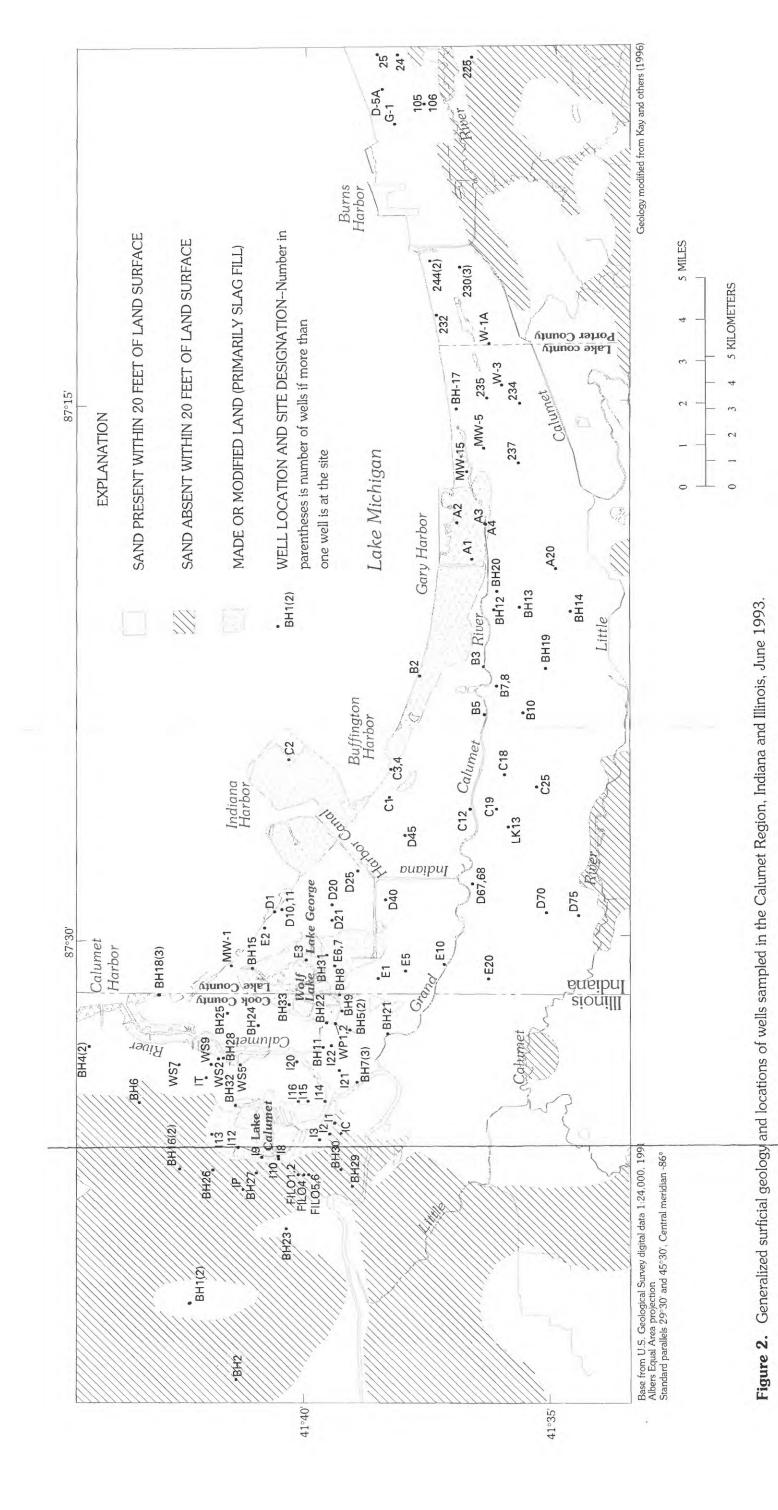
Geology of the bedrock and surficial deposits and in the study area were mapped by Schneider and Keller (1970). Bedrock deposits in Indiana were mapped by Gray and others (1987). Topography of the bedrock surface, thickness of unconsolidated deposits, and surficial geology in Indiana, were mapped by Gray (1982, 1983, 1989). Kay and others (1996) mapped the topography of the bedrock, the thickness of clay, and the thickness of sand in the study area. These maps, along with the references cited, form the basis for the following description of geology in the study area.

The study area is underlain by Silurian and Devonian bedrock, primarily dolomite, limestone, and shale. These rocks are the result of consolida-

tion of sediments originally deposited in shallow to moderately shallow water (Hartke and others, 1975, p. 5). The bedrock strata are fairly flat throughout the study area, except in the northeast where they dip slightly to the north and northeast. The surface of the bedrock is eroded. Bedrocksurface altitudes range from less than 425 to more than 625 ft above sea level. The high points are associated with reef deposits; the low points are bedrock valleys that mark the paths of preglacial drainage that flowed northward, toward the Michigan Basin, from a divide to the south and west.

Unconsolidated deposits in the study area are primarily silt, clay, and sand; small amounts of muck, peat, and gravel are found in places. Silt and clay are present at land surface in most of the Illinois part of the study area and are found at depth in the Indiana part of the study area. Sand is present at land surface in most of Indiana north of the Little Calumet River and east of Lake Calumet in Illinois (fig. 2). Most of these sediments originally were derived from glaciers and were laid down as lake-bottom and nearshore deposits of glacial Lake Chicago near the end of the Wisconsin glacial stage (Willman, 1971, p. 38–51; Hartke and others, 1975, p. 7). Subsequent lowering of lake stage exposed the sediments to erosion and deposition by water and wind. The unconsolidated sediments range in thickness from less than 5 ft to more than 200 ft (Kay and others, 1996).

Throughout most of the study area, a silty clay layer overlies the bedrock; in some places, however, the clay may overlie a thin (less than 5 ft) layer of poorly sorted silty sand and gravel on top of the bedrock (Cravens and Zahn, 1990, p.15). The clay layer, which ranges in thickness from less than 4 ft to about 200 ft (Kay and others, 1996), consists primarily of glacial till and lacustrine clay and may contain small to moderate amounts of gravel (Hartke and others, 1975, p. 7). The upper bound-


ary of the till is eroded and represents a transition from deposition dominated by glacial processes to deposition dominated by lacustrine processes that resulted when the Wisconsin glacier retreated to the north and Lake Chicago was formed.

In the Indiana part of the study area, the clay layer is overlain by sand, including dune, beach, and lacustrine sediments that may contain thin, discontinuous layers of muck, peat, and organic materials. The sand is generally thickest in the eastern part of the study area. In the extreme eastern part of the study area, two sand layers are separated by a layer of silty clay. Thickness of sand in the study area ranges from 0 to more than 100 ft (Kay and others, 1996). The clay layer is overlain by sand in the eastern part of the study area in Illinois. Silt and clay are at land surface in the remainder of the study area in Illinois (fig. 2).

There are substantial areas of made or modified land in the study area (fig. 2). In some areas, the tops of dune ridges were removed and swampy land was dredged to provide fill for topographically low areas. In other places, materials such as slag and ash were used as fill. The areas near Wolf Lake, Lake George, and Lake Calumet have been altered substantially by dredging of sand and disposal of slag and waste materials. Along the shoreline of Lake Michigan, large areas of made land, primarily containing crushed and hot-poured slag, extend into the lake.

Hydrology

The study area is in parts of two surface-water drainage systems. The eastern part of the study area drains through the Indiana Harbor Canal and Burns Waterway into Lake Michigan and the St. Lawrence drainage system. The northern part of the study area in Illinois drains into Lake Michigan through the Calumet River. The western part of the study area drains through the Calumet Sag Channel into the Des Plaines River and the Mississippi drainage system.

Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

The Grand Calumet, Little Calumet, and Calumet Rivers are the principal streams in the study area (fig. 1). The natural gradient and direction of flow in these streams have been altered substantially by human activities such as dredging and filling reaches of the streams and adjacent wetlands and by industrial and municipal discharges to the streams. Flow divides of varying location and duration have been documented on all three of these streams (Moore, 1959; Cook and Jackson, 1978; Crawford and Wangsness, 1987).

Lake Michigan, which forms the northern boundary of the study area, is a dominant influence on surface- and ground-water flow. During 1903—91, the stage of Lake Michigan at Calumet Harbor, Illinois, ranged from about 576.9 to 582.3 ft above sea level and averaged about 579.5 ft above sea level (National Oceanographic and Atmospheric Administration, written commun., 1992). Lake Michigan is the principal water source for public and industrial supply in the study area.

Other principal lakes in the study area are Lake Calumet, Wolf Lake, and Lake George (fig.1). These lakes formed in the depressions of former embayments of Lake Michigan. Lake Calumet and Wolf Lake are similar in size, approximately 770 acres; Lake George is smaller, approximately 130 acres. Originally, the lakes were shallow (5–10 ft deep) and were bordered by extensive wetland areas. The lakes were dredged, and many of the wetlands were filled. Areas in and around Lake Calumet, Wolf Lake, and Lake George have been partially filled with slag from steel mills and with municipal solid waste (Hartke and others, 1975; Colton, 1985).

Two principal aquifers underlie the study area: the unconsolidated surficial sand aquifer and the Silurian and Devonian carbonate-bedrock aquifer. In most of the area, these aquifers are separated by a confining unit of silty clay (Kay and others, 1996).

The surficial sand deposits in the study area were described as unit 1 by Rosenshein and Hunn (1968) and were designated the Calumet aquifer by

Hartke and others, (1975, p. 25). The Calumet aquifer is an unconfined, water-table aquifer that is continuous through most of the eastern and central two-thirds of the study area but is present only in scattered locations in the western third of the study area. The Calumet aquifer consists primarily of beach and dune sand, although thin layers of peat, muck, and organic-rich clay may be present at the surface or at depth. The sand ranges in thickness from 0 to more than 100 ft and is thickest in the eastern part of the study area. The saturated fill deposits in areas near Lake Michigan, Lake Calumet, Wolf Lake, and Lake George also are considered in this report to be part of the Calumet aquifer.

The Calumet aquifer is recharged by direct infiltration of precipitation. The position of the water table ranges from above land surface in wetland areas to more than 100 ft beneath the highest dunes (Kay and others, 1996). The average depth to water in most of the study area is probably less than 10 ft. Lowering of the water table in many areas as a result of ditching and draining the wetlands may have decreased the rate of recharge by dewatering the upper part of the aquifer (Rosenshein, and Hunn, 1968, p. 30). Urbanization also has altered recharge; large areas of built-up and paved land restrict infiltration, and storm sewers intercept runoff and pipe it directly to streams.

Discharge from the Calumet aquifer is primarily to surface water, including rivers, ditches, wetlands, and lakes. Evapotranspiration probably constitutes a major part of the discharge during spring and summer (Rosenshein and Hunn, 1968, p. 30). Fenelon and Watson (1993, p. 38) reported that, in some urban areas, a substantial amount of water in the Calumet aquifer may discharge to sewers. Although the aquifer is not used extensively in the study area, records on file at the Indiana Department of Natural Resources indicate that several wells drilled for commercial, industrial, irrigation, and drinking-water uses are supplied from the Calumet aquifer.

A clay confining unit underlies the Calumet aquifer and overlies the Silurian-Devonian aquifer in most of the study area. The confining unit is primarily silty clay but may contain sand and gravel in small, discontinuous zones. In the eastern part of the study area, confined sand aquifers are within and beneath the confining unit (Shedlock and others, 1994). The upper surface of the confining unit slopes toward Lake Michigan. The confining unit is thickest in the western one-third of the study area, where it is at the land surface. In this area, the water table is in the confining unit. Throughout most of the remainder of the study area, the confining unit restricts flow between the Calumet aquifer and the Silurian-Devonian aquifer.

The Silurian-Devonian aquifer underlies the entire study area. The aquifer is semiconfined except at Stoney Island (fig. 1), where the bedrock crops out and the water table is in the bedrock, and in areas northeast of Stoney Island and along the Calumet Sag Channel, where the bedrock is overlain by sand. The Silurian-Devonian aquifer is a source of water for industrial and commercial uses and, to a lesser extent, a source of drinking water. The aquifer is used extensively in the Illinois part of the study area but is not used substantially in Indiana.

The Silurian-Devonian aquifer is recharged by percolation of ground water from the Calumet aquifer through the clay confining unit. In places where the confining unit is absent, recharge is by infiltration of precipitation directly to the bedrock or through overlying deposits of sand. Within the study area, discharge from the Silurian-Devonian aquifer is primarily to areas of pumping.

METHODS OF STUDY

The methods described for this study include procedures for sample collection and sample analysis. Methods of quality assurance, which also are described, include onsite and laboratory procedures and a review by staff of USEPA.

Sample Collection and Analysis

Water samples were collected from 128 wells in northwestern Indiana and northeastern Illinois during June 14-28, 1993 (fig. 2). The wells were selected to provide data that would characterize the ground-water quality throughout the study area; however, access to the wells was a primary consideration in selection. A network of wells had been established in Indiana as a result of previous investigations by the U.S. Geological Survey (Watson and others, 1989; Fenelon and Watson, 1993; Shedlock and others, 1994; Kay and others, 1996). These wells were installed to determine directions of ground-water flow and characterize regional ground-water quality. Few of these wells were installed to monitor specific areas where groundwater contamination was known or suspected. The wells in Illinois were installed for more varied reasons. Previous investigations in the Illinois part of the study area were undertaken principally to monitor ground-water flow and quality at specific sites. One, more areally extensive, study by Roadcap and Kelly (1994) included the area around and east of Lake Calumet—an area that includes industrial, waste-treatment, and waste-disposal activities. The wells sampled in Illinois for this study are a combination of wells installed for the studies by Kay and others (1996) and Roadcap and Kelly (1994) and include several wells installed to monitor groundwater quality at specific sites where contamination of the ground water previously had been identified.

Multiple wells (two or more wells at the same location but completed at different depths) were sampled at 17 sites to identify differences in water quality with depth. Most of the wells in Indiana are completed in the Calumet aquifer; the wells in Illinois are completed in either the Calumet aquifer, the confining unit, or the Silurian-Devonian aquifer (table 1, appendix 1). Four wells in the eastern part of the study area are completed in confined sand aquifers within the confining unit. No bedrock wells in Indiana were sampled for this study. Sample numbers, that were given an "S" prefix, were assigned at each well according to the approximate order of collection.

At most wells, water samples were collected by means of low-flow, submersible sampling pumps. The pumps were constructed of chemically inert materials and were equipped with polytetrafluoroethylene (PTFE) discharge hoses. Eight wells were sampled by use of a PTFE or stainless-steel bailer; these wells either did not recharge quickly enough to allow use of a pump, were in remote locations that made the use of a pump impractical, or were known to contain water having large concentrations of organic compounds that would make pump decontamination difficult. All wells were sampled in accordance with procedures outlined by the USEPA (1987, p. 115–126). A sampling and analysis plan was prepared by the USGS and approved by the USEPA prior to sampling (R.T. Kay, U.S. Geological Survey, written commun., 1993).

At each well, the well depth and depth to water were measured by use of a steel tape, and the volume of water in the well was calculated. The pump was set in the well so that the pump intake was above the top of the open interval in wells completed below the water table and at least 1 ft above the bottom of the well in wells completed at the water table. During pumping, the pump discharge was connected to a flowthrough cell in which onsite measurements of water temperature, pH, oxidation-reduction potential, dissolved oxygen, and specific conductance were monitored by means of a multiprobe water-quality meter. The meters were calibrated daily by use of known reference standards. A minimum of three casing volumes of water was pumped from the well before samples were collected. If the onsite measurements had not stabilized to the established criteria (plus or minus 0.5°C for temperature, 0.25 pH units, 25 mv for oxidation-reduction potential, and 50 µS/cm for specific conductance) by the time three casing volumes were removed, a fourth casing volume of water was removed before sampling. For samples collected by use of a bailer and for wells in which water levels did not recover quickly from pumping, a minimum of two casing volumes of water was removed from the well before sampling. Onsite

measurement of water from wells that were bailed was accomplished by pouring the water into a PTFE bucket and recording the readings by use of the multiprobe meter.

Samples were collected according to the type of container and preservation requirements listed in table 2. Samples were not collected in any specific order, except that samples for analysis of volatile organic compounds were collected first and samples for analysis of metals were collected last. The samples for metals were filtered through a disposable 0.45-micrometer filter that was attached to the pump-discharge line. Samples collected by use of a bailer were placed in a PTFE bucket and filtered into the sample container by use of a peristaltic pump. Preservatives were added to the sample bottles (table 2) before collection of the sample. The samples were recorded on USEPA sample reporting forms, packed on ice in coolers, sealed with chainof-custody tape, and shipped by overnight carrier to USEPA contract laboratories for analysis.

After each well was sampled, the sampling pump and discharge hose were rinsed with soapy water and scrubbed with a brush. Approximately 2 gal of soapy, tap water were pumped through the pump and hose. The soapy-water wash was followed by pumping approximately 2 gal of tap water and, finally, 1 to 2 gal of deionized or distilled water through the pump and discharge hose. The same procedure was modified to clean the bailers. Water-quality meters and probes were rinsed with deionized or distilled water. Filters were discarded after each use.

Four laboratories analyzed samples for this investigation. Samples for organic compounds and compounds containing pesticides or polychlorinated biphenols (PCB's) collected during June 14–18 were analyzed by Wadsworth/Alert Laboratories, Incorporated¹. The same type of

¹Use of trade, product, industry, or firm names in this report is for identification or location purposes only and does not constitute endorsement by the U.S. Geological Survey or impute responsibility for any present or potential effects on natural resources.

Table 2. Sample container, preparation, and preservation requirements for ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993

[mL, milliliter; PTFE, polytetrafluoroethylene; HCl, hydrochloric acid; °C, degree Celsius; PCB, polychlorinated biphenyl; NaOH, sodium hydroxide; H₂SO₄, sulfuric acid; HNO₃, nitric acid]

Analyte	Sample container, preparation, and preservation
Volatile organic compounds	Two 40-mL amber glass vials with PTFE septum caps; preserve with HCl to pH less than 2, exclude air bubbles, cool to 4°C
Base/neutral plus acid extractable semivolatile organic compounds	One 80-ounce amber glass bottle, cool to 4°C
Pesticides and aroclor PCB's	One 1,000-mL polyethylene bottle; preserve with NaOH to pH greater than 12, cool to 4°C
Total organic carbon and ammonia	One 1,000-mL polyethylene bottle; preserve with H ₂ SO ₄ to pH less than 2, cool to 4°C
Dissolved and suspended solids, silica, chloride, sulfate, alkalinity, and acidity	Two 1,000-mL polyethylene bottles; cool to 4°C
Metals	One 1,000-mL polyethylene bottle; filter sample through 0.45-micrometer filter, preserve with HNO ₃ to pH less than 2, cool to 4°C

analysis was done by Southwest Research Institute laboratories for samples collected during the remainder of the study. Samples for trace elements and cyanide were analyzed by TMA/Skinner/Sherman laboratories. Samples for water-quality properties and common ions were analyzed by Princeton Testing Laboratories.

Quality Assurance

Quality-assurance procedures for the data collected during this study are divided into three categories: onsite procedures, laboratory procedures, and a USEPA quality-assurance review. Results of analysis of the quality-assurance data indicate inconsistencies with respect to several constituents including aluminum, ammonia nitrogen, bis(2-ethylhexyl)phthalate, di-n-butylphthalate, copper, iron, lead, and thallium. Although the quality-assurance procedures do not always resolve the inconsistencies in the data, they do indicate that results of the analyses for these constituents should be used with caution.

Onsite Procedures

Quality-assurance procedures used during sample collection are described in the sampling and analysis plan written for this study (Robert T. Kay, U.S. Geological Survey, 1993, written commun.). The sampling protocol described in the previous section of this report is part of the onsite qualityassurance procedures. Other onsite procedures consisted of collecting blank and duplicate samples for analysis by the laboratories. Two types of blank samples were collected: sampling-device blanks and trip blanks. The sampling-device blanks were analyzed for all constituents analyzed during this study; trip blanks were analyzed only for volatile organic compounds. Blank samples were designated by an "R" prefix followed by a twodigit number that indicates the relative order of collection. Sampling-device blanks were given an "MB" prefix, and trip blanks were given a "TB" prefix in the sample name. Duplicate samples were collected for regular analysis and for laboratory use as matrix-spike samples. Duplicate samples were designated by a "D" prefix. Results of the analyses of quality-assurance samples are presented in tables 3 through 12 (appendix 2).

10 Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Sampling-device blanks were collected after initial cleaning of the sampling pumps and before collecting the first sample. The sampling-device blanks were prepared by pumping distilled water through the sampling pump and filling sample bottles as though a regular sample were being collected. Sampling-device blanks were collected from each of the four pumps used to collect samples. Results of the analyses of these samples (R-01 through R-04) are listed in tables 3 through 7 (appendix 2). An additional sampling-device blank (R-05) was collected after cleaning the pump used to collect a sample from well D10, in which a floating layer of oil was observed during sampling. Two sampling-device blanks (R-09 and R-13) were collected by use of a bailer.

The laboratories reported detecting many of the common ions, six trace elements, two volatile organic compounds (VOC's), and six semivolatile organic compounds (SVOC's) in the sampling-device blanks (tables 3 through 7). Concentrations of most constituents in the blank samples were generally small compared to concentrations of these constituents in the ground-water samples. Therefore, detection of these constituents in the sampling-device blanks does not compromise the quality of the data. Several constituents that were detected in the sampling-device blanks in concentrations similar to those in the ground-water samples are discussed in the following paragraphs.

Two common ions, ammonia nitrogen and iron, were detected in three and five of the sampling-device blanks. Aluminum was detected in both sampling-device blanks collected by use of bailers. The source of aluminum may be aluminum foil that was used to wrap the bailers during storage. Wells sampled by use of bailers are E7 (S-025), MW-15 (S-043), A3 (S-044), A1 (S-049), BH15 (S-063), W3 (S-080), I20 (S-119), and FILO4 (S-125). Unless these constituents were present in the distilled water used for the blanks, their detection in the sampling-device blanks indicates potential for contamination of the samples by the sampling equipment. No samples were collected directly from the distilled water that was purchased locally during the study.

Copper was detected in one of the sampling-device blanks collected by use of a pump; however, copper was not detected in 12 subsequent samples collected by use of that same pump. Lead was detected in two sampling-device blanks that were collected by use of a pump. Lead was not detected in seven samples collected after the first blank, and lead was not detected in water from two wells, D11 (S-018) and D10 (S-019), that were sampled prior to collecting the second blank sample. Lead was detected in 12 of 23 samples collected after the second blank by use of this pump. The source of lead is not obvious; however, the data indicate a potential for lead contamination at concentrations similar to those detected in ground-water samples.

Thallium was detected in two sampling-device blanks at concentrations similar to those in the ground-water samples. Thallium was detected in several laboratory blanks; its presence in many of the ground-water samples is qualified by the USEPA review and is discussed later in the report.

Most of the organic compounds detected in sampling-device blanks either were not detected in ground-water samples or were detected in ground-water samples that were not collected by use of the same device that was used to collect the blank sample. Phenol was detected in 1 sampling-device blank but was detected in only 1 of 29 samples collected by use of the same pump. Bis(2-ethylhexyl)phthalate and di-n-butylphthalate were detected in four and two sampling-device blanks. These compounds also were detected in several laboratory blanks, are commonly used in laboratories, and are further qualified by the USEPA review. Detections of bis(2-ethyhexyl) phthalate and di-n-butylphthalate in ground-water samples for this study are not considered representative of water quality.

Trip blanks were prepared by filling two or three 40-mL sample bottles with laboratory-grade organic-free water. Trip blanks were kept by the sampling crews in coolers with ground-water samples during sample collection. Trip blanks were packed in coolers and shipped to the laboratory for analysis of VOC's. Trip blanks can help determine

whether the samples collected for analysis of VOC's were contaminated after collection. Results of analysis of the trip blanks are listed in table 5 (appendix 2). No VOC's were detected in any of the trip blanks, an indication that sample integrity was maintained during transport and storage.

Thirteen duplicate samples were collected and sent to the laboratories for the same chemical analyses as the regular samples (tables 8 through 12, appendix 2). An additional sample was collected from well BH31, and analytical results for that sample are included with the duplicate sample pair for comparison. One duplicate sample was collected for every 10 samples or portion of 10 samples. Two additional duplicate samples were collected for every 20 samples for use by the laboratories as matrix-spike samples. Samples and duplicate samples were collected sequentially from the same well.

Results of the duplicate-sample analyses indicate the random variation of the sample-collection procedure. The relative percent difference (RPD) was selected to compare concentrations between each sample and duplicate sample. The RPD was calculated for each analyte and duplicate sample pair by means of the formula

RPD =
$$\frac{(C1 - C2) \times 100 \text{ percent}}{(C1 + C2)/2}$$

where

C1 is the larger of the two concentrations, and

C2 is the smaller of the two concentrations (U.S. Environmental Protection Agency, 1989, p. 13).

The RPD was calculated for 30 analytes that were detected in the sample and the sample duplicate. Analytes that were detected in one but not both of the sample pairs, and analytes that were not detected in either of the sample pairs, are not included in the RPD analysis because of uncertainty in the actual concentration of analytes reported as less than the quantitation limit.

The RPD results (table 13) indicate only small differences between concentrations of most analytes in the sample pairs. Of the total number of individual comparisons, 178 had RPD's of less than 25 percent and 35 had RPD's of more than 25 percent. Although the range of RPD's was varied among analytes, 19 of the 30 analytes tested had median RPD's less than 10 percent. Only four analytes—suspended solids, aluminum, zinc, and acetone—had median RPD's that exceeded 25 percent. The large RPD's may have resulted from random variation in sampling procedures, in laboratory analyses, or in ground-water quality.

Acetone is the only target VOC detected in duplicate sample pairs (table 10, appendix 2). Acetone was detected in all of the three samples from BH31 (S-031, D-031, and S-036). The RPD between concentrations of acetone in the first sample and duplicate sample is about 82; however, concentrations of acetone in the first and the additional sample are identical. The consistent detection of acetone in water from BH31 confirms the presence of this compound in ground water and indicates the capability of detecting acetone in the samples. The large RPD between concentrations in the first and duplicate samples indicates inconsistent precision during sample collection or in determining concentrations of acetone. Acetone is commonly used in laboratories as a cleaning agent and solvent and is a potential contaminant of samples submitted for analysis. However, acetone was detected in only 4 of the 128 ground-water samples, indicating that acetone probably was not introduced into the samples at the laboratory. The other target VOC's were not tested by the duplicate sample analysis because no VOC's were detected in these samples.

Ten of the trace elements, seven SVOC's, and four pesticide compounds were detected at least once in either the sample or the duplicate sample but not in both samples (tables 9, 11, and 12, appendix 2). For most of these analytes, this pattern of detection is observed in 3 or fewer of the 13 sample pairs, and the reported concentrations are similar to, or less than, the laboratory quantitation limit. This pattern of detection is observed for

Table 13. Statistical summary of relative percent differences for analytes detected in both the sample and the duplicate sample [RPD, relative percent difference; --, insufficient data]

							Number of
Analyte	Number of sample pairs	Minimum RPD	Maximum RPD	Lower quartile	Median	Upper quartile	sample pairs exceeding 25 RPD
Alkalinity	11	0	68.2	0.47	2.32	9.7	2
Ammonia nitrogen	10	0	50.0	0.9	12.75	28.5	3
Calcium	13	0	9.4	1.0	1.57	5.2	0
Chloride	11	.25	26.6	1.8	7.17	18	-
Dissolved solids	11	77.	8.1	1.6	2.54	5.1	0
Iron	13	0	61.9	1.1	8.51	8.1	_
Magnesium	12	0	10.7	88.	1.75	4.5	0
Manganese	12	0	22.7	1.4	1.93	4.0	0
Potassium	13	0	34.0	1.0	3.15	6.4	1
Silica	11	1.7	10.4	2.6	5.50	6.0	0
Sodium	13	0	16.9	.82	2.26	8.5	0
Sulfate	10	0	74.1	2.6	12.7	34	3
Suspended solids	11	0	73.7	2.0	45.4	64.2	7
Total organic carbon	10	2.4	99.4	5.4	11.0	53.5	3
Aluminum	\$	3.3	78.2	I	46.8	ŀ	m
Arsenic	7	0	69.1	;	9.52	ł	2
Barium	12	0	27.2	.78	3.02	9.8	
Copper	_	1	ł	1	.53	1	0
Cyanide	2	.46	10.2	;	5.33	1	0
Lead	4	5.4	0.96	6.3	19.4	79.5	2
Mercury	5	7.4	85.7	7.7	16.7	74.5	2
Nickel	_	1	}	1	18.9	1	0
Selenium	2	2.7	9.5	:	6.10	ŀ	0
Thallium	4	2.2	70.2	ŀ	9.40	ŀ	
Vanadium	3	2.1	5.1	ŀ	4.72	ŀ	0
Zinc	2	40.9	44.4	ŀ	42.6	ł	2
Acetone	-	ł	ŀ	1	81.5	ł	_
Dhanol		;	ł	;	00 8	ł	
Paracresol		;	1	;	13.3	:	o 0
Bis(2-ethylhexyl)phthalate	1	;	ŀ	ł	.29	ì	0

bis(2-ethylhexyl)phthalate in six sample pairs, for lead in five sample pairs, and for mercury and thallium in four sample pairs. Although the reported concentrations are small, the inability to detect these analytes in both the sample and the sample duplicate implies uncertainty about their presence in the samples and indicates less precision in results for these analytes compared to the others, at least where concentrations were similar to the quantitation limit. Compounds containing polychlorinated biphenyls (PCB's) were not detected in any duplicate sample pairs and were not tested by the duplicate analysis.

Laboratory Procedures

Laboratory quality-assurance procedures are described in the USEPA Contract Laboratory Program (CLP). The contract between the laboratory and USEPA specifies the criteria for sample holding times, analytical procedures, quantitation limits, instrument calibration, and type and frequency of laboratory blanks and matrix-spike samples. The contract also requires specific documentation of the laboratory quality-assurance procedures (Simms and Daddow, 1994).

A data package was prepared by the contract laboratory for each group of samples processed. The data package included the analytical results for the regular samples and the onsite and laboratory quality-control samples. The data package also contained the documentation of the laboratory quality-assurance procedures. The data package was submitted to USEPA for review and validation.

U.S. Environmental Protection Agency Quality-Assurance Review

The USEPA reviews each data package from the contract laboratories. The review includes evaluation and validation of the data by means of a systematic procedure that has established criteria for determining the usability of the data (Simms and Daddow, 1994). The review covers all aspects of the laboratory contract and quality-assurance procedures and qualifies the data on the basis of review results.

Results of the USEPA review indicate that, for all analyses, the data are acceptable with the appropriate qualifications (Charles T. Elly, U.S. Environmental Protection Agency, Region 5, written commun., 1993). Many of the analytical data were qualified as "estimated" by the USEPA review. This qualification means that either contamination was suspected, the reported concentration is smaller than the contract-required quantitation limit but larger than zero, or the laboratory did not provide complete documentation of the quality-assurance procedures as established by the CLP. All tentatively identified organic compounds were qualified as estimated because both identification and quantitation are questionable. Estimated concentrations are usable for analyses of the data; however, the reported value may not be accurate or precise. In this report, estimated concentrations are identified by an "e" after the value.

Other data qualifiers applied by the USEPA quality-assurance review and used in this report are the "d" and "p" qualifiers. The "d" data qualifier identifies compounds that were detected in samples that were diluted. Samples were diluted if they were suspected to contain large concentrations on the basis of previous knowledge of water quality at a site or because contaminants (such as floating oil) were observed at the time of sampling. Samples also were diluted and re-analyzed if concentrations of one or more compounds exceeded the calibration range of the laboratory instruments used for the specific analysis. For these samples, the laboratory reports the results of both analyses.

A "p" data qualifier is used for compounds containing pesticides or PCB's when the difference in detected concentrations between the two gas chromatograph columns used for the analysis is greater than 25 percent. As part of the quality assurance, the CLP requires the use of two columns—one for quantitation and one for confirmation of the compound. The smaller of the two concentrations is reported and identified with a "p".

An "R" data qualifier was applied during the USEPA review to a few results that were determined to be unusable. Results of 4 analyses for ammonia nitrogen and 25 analyses for thallium were qualified as unusable because the reported concentrations were less than the instrument detection limit as determined from laboratory calibration reports. Results qualified as unusable are not included in this report.

GROUND-WATER QUALITY

Discussion of the results of the analyses of the samples collected during this study are divided into two sections; onsite measurements and laboratory analyses. Laboratory analyses are subdivided into water-quality properties and common ions, trace elements, VOC's, SVOC's, and compounds containing pesticides or PCB's. The laboratories reported water-quality characteristics and some of the common-ion concentrations in milligrams per liter. The remaining analyses were reported in micrograms per liter. Concentrations of common ions reported in micrograms per liter are converted to milligrams per liter for purpose of discussion in this report (see Conversion Factors at front of report). Concentrations listed in the tables are in the units reported by the laboratories.

Samples designated by the "S" prefix are considered to be the sample for wells from which duplicate samples were collected; those concentrations are reported in the tables and text and are used in statistical analysis of the data. Two samples (S-031 and S-036) and one duplicate sample (D-031) were collected from well BH31. The second sample (S-036) is considered to be the sample for this well because it was collected by the same personnel that collected samples from other wells in Indiana.

In order to describe ground-water quality in the study area, each of the 128 sampled wells was assigned a primary land use (table 1, appendix 1). Five categories of land use were assigned: commercial, industrial, natural, residential, and waste disposal. The assigned land uses are based on the authors' best estimates of past and present land use in the vicinity of each well and take into account the direction of ground-water flow determined in previous studies (Watson and others, 1989; Fenelon and Watson, 1993; Shedlock and others, 1994; Kay and others, 1996). For example, a well in a residential area that is downgradient of industry was assigned an industrial land use because the ground water more likely would be affected by industrial rather than residential activities. In addition, wells in areas that are not industrial but are known to have been filled with industrial waste (such as slag or fly ash) were assigned to the waste-disposal land-use category.

For compounds that have established drinkingwater standards, concentrations in samples are compared to USEPA Maximum Contaminant Levels (MCL's) and Secondary Maximum Contaminant Levels (SMCL's) (U.S. Environmental Protection Agency, 1992). MCL's are concentration limits for certain substances in water delivered to customers of public water systems; MCL's are based on consideration of risk to human health, technological considerations, and economic costs. In some cases, where an MCL has not been established, a proposed MCL is used for comparison with the water-quality data. SMCL's are suggested concentration limits for substances in water that do not result in adverse health effects but may limit the use of water because of unpleasant taste, odor, or color. The USEPA lists action levels rather than MCL's for copper and lead; these trace elements are common components of materials used to construct water-supply systems and therefore cannot be regulated at the source of the water supply.

Onsite Measurements

Measurements of water temperature, pH, oxidation-reduction potential (Eh), dissolved oxygen (DO), and specific conductance (SC) were recorded at each site immediately before sample collection. Results are listed in table 14 (appendix 3) and are summarized in table 15.

Table 15. Statistical summary of onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993

[°C, degrees Celsius; mv, millivolts; mg/L, milligrams per liter; µS/cm, microsiemens per centimeter at 25 °C]

Ground-water property and unit of measurement	Geohydrologic unit	Number of samples	Median	Minimum	Maximum
Temperature (°C)	All units	125	14.1	10.3	20.8
	Calumet aquifer	91	13.6	10.3	20.8
	Confining unit	20	14.8	12.8	20.5
	Confined sand aquifers	4	13.1	11.2	13.9
	Silurian-Devonian aquifer	10	16.2	14.1	18.6
pH (standard units)	All units	118	7.2	5.3	12.1
	Calumet aquifer	84	7.2	5.3	12.1
	Confining unit	20	7.35	6.5	12.1
	Confined sand aquifers	4	7.8	7.7	8.1
	Silurian-Devonian aquifer	10	8.0	6.7	9.1
Oxidation-reduction potential (mv)	All units	124	-64.5	-446	159
	Calumet aquifer	91	-75.0	-446	136
	Confining unit	19	79.0	-264	159
	Confined sand aquifer	4	-184	-202	-164
	Silurian-Devonian aquifer	10	-47.5	-180	109
Dissolved oxygen (mg/L)	All units	109	.5	0	9.1
	Calumet aquifer	80	.4	0	9.1
	Confining unit	16	1.8	.3	4.2
	Confined sand aquifer	4	.15	0	.3
	Silurian-Devonian aquifer	9	1.2	.4	1.6
Specific conductance (µS/cm)	All units	125	828	106	5,980
	Calumet aquifer	91	842	106	4,030
	Confining unit	20	1,750	192	5,980
	Confined sand aquifer	4	756	462	1,740
	Silurian-Devonian aquifer	10	484	290	3,630

Ground-water temperatures were measured for 125 of the samples. Temperatures ranged from 10.3 to 20.8°C; the median was 14.1°C. The median ground-water temperature is 4°C warmer than the mean annual air temperature, 10.1°C, reported for Gary, Ind. (National Oceanic and Atmospheric Administration, 1982). Water temperatures measured in the flow-through cell can be affected by air temperature, length of the discharge tubing, or exposure to sunlight during the measurement; therefore, the temperature of the sample may not represent the temperature of ground water in the formation. The average air temperature during June 1993 at the Indiana Dunes National Lakeshore was 19.4°C (National Oceanic and Atmospheric Administration, 1993). The average air temperature was warmer than the average ground-water temperature—an indication that, for this study, temperatures measured in the flow-through cell most likely would be warmer than the ground-water temperature.

Water temperatures varied most in samples from the Calumet aquifer (table 15); in fact, the minimum and maximum temperatures for all wells were measured in samples from wells in the Calumet aquifer. Samples from wells in the confining unit had a slightly smaller range of temperature than samples from wells in the Calumet aquifer. Samples from wells in confined sand aquifers and in the Silurian-Devonian aquifer had the smallest ranges of water temperature, probably because fewer samples were collected from these geohydrologic units.

Comparison of water temperature at 16 sites where multiple wells are screened at different depths indicates no consistent trend. Water from deep wells was warmest at 11 sites and water from the shallow wells was warmest at 5 sites. Fenelon and Watson (1993, p. 43) reported seasonal reversals in the relative temperatures for water from shallow and deep wells in Lake County, such that water in shallow wells was colder than water in deep wells during spring but warmer during summer.

Values of pH measured in water from 118 wells ranged from 5.3 to 12.1; the median is 7.2 (table 15). Half of the samples had values of pH that ranged from 6.9 to 7.6. The SMCL for pH is from 6.5 to 8.5. In most ground water in the United States, pH ranges from about 6 to about 8.5 (Hem, 1985, p. 63-64). In 89 percent of the samples for this study, pH was within this range. Water from nine wells had a pH of less than 6.5, and water from only one well, A20 (S-079), had a pH of less than 6. This well is in a residential area in the central part of the study area (fig. 2). The reason for this low pH is not known; it may be a result of measurement error. Fenelon and Watson (1993) reported three pH measurements for water from this same well that ranged from 7.2 to 7.4.

Samples from 12 wells had values of pH larger than 8.5. Except for well BH1D (S-089), these wells are installed in the Silurian-Devonian aquifer or are in areas of made or modified land that contain various amounts of slag. The largest pH values were measured in water from wells in areas where slag is present. In water from several of these wells, pH exceeded 11. Although slag was not observed near BH1D, the large value of pH for water from this well is similar to those measured in water from wells near slag.

The median pH for water from each of the four geohydrologic units indicates an increase in pH with depth (table 15). Because the bedrock is predominantly dolomite and limestone, an increase in pH of water from the Silurian-Devonian aquifer compared to water from shallow wells is expected in areas of natural water quality. The range of pH for the four units reflects the number of samples from each unit. Water from wells screened in the Calumet aquifer had the largest range of pH, and water from wells screened in confined sand aquifers had the smallest range.

Comparison of pH for water from multiple wells completed at different depths at 15 sites does not indicate an increase in pH with depth, as do the median values, except at three sites where the deep

well is screened in a confined sand aquifer. Among six sites where the deep well is in the Silurian-Devonian aquifer, pH was higher in water from the Silurian-Devonian aquifer at three sites and was higher in the shallow-well water at three sites. At two sites, BH18 and FILO5-6, where pH was higher in shallow-well water than in water from the Silurian-Devonian aquifer, the shallow ground water is in contact with slag fill or industrial waste.

Oxidation-Reduction Potential

The Eh of water is an index of the exchange activity of electrons among elements in solution. Measurements of Eh describe the electric potential, using the potential of the hydrogen electrode as a reference point of zero. A positive potential indicates oxidizing conditions in the water; a negative potential indicates reducing conditions (Hem, 1985, p. 159).

Measurements of Eh were made in water from 124 wells. Values of Eh ranged from -446 to 159 mv; the median is -64.5 mv, an indication of reducing conditions in most ground water in the study area. In all, 82 measurements indicated reducing conditions, whereas 42 measurements indicated oxidizing conditions.

The median Eh for the four geohydrologic units indicated reducing conditions in the three aquifer units and oxidizing conditions in the confining unit. Of the 91 measurements in water from wells screened in the Calumet aquifer, nearly 75 percent (66 samples) were indicative of reducing conditions. Twelve measurements in water from the confining unit indicated oxidizing conditions, whereas seven measurements in water from this unit indicated reducing conditions. Measurements of Eh in water from the Silurian-Devonian aquifer were divided equally between oxidizing and reducing conditions. Water from all four wells screened in confined sand aquifers had Eh values indicating reducing conditions.

Comparison of Eh at 15 sites having more than one well indicated an increase in reducing conditions with increasing depth. Water from wells at 13 of the sites had Eh values indicating either a decrease in oxidation potential or an increase in reduction potential with increased well depth. At only one site (wells WP1 and WP2) did Eh measurements show a decrease in reduction potential with depth. At site BH18, Eh measurements indicated oxidizing conditions in water from three wells. The data for this site show a decrease in oxidation potential between the shallow well and the intermediate-depth well. Water from the deep well has an oxidation potential similar to that of water from the intermediate-depth well.

Dissolved Oxygen

DO was measured for water samples from 109 wells (table 15). Concentrations of DO ranged from 0 to 9.1 mg/L; the median was 0.5 mg/L. Half of the samples had dissolved-oxygen concentrations between 0.2 and 1.6 mg/L. Concentrations of DO were larger than 2.0 mg/L in 18 samples. All the samples having DO concentrations larger than 2.0 mg/L were from wells less than 24 ft deep except for the sample from well BH1D (S-089), a 90-ft-deep well having water that contained 2.2 mg/L of DO. Concentrations of 0 mg/L were reported for samples from three wells: LK13 (S-118), 232 (S-082), and 105 (S-084). Well 105 is screened in a confined sand aquifer; the other two wells are screened near the base of the Calumet aquifer.

The median DO concentrations for water from each of the four geohydrologic units indicated that the smallest concentrations were in water from confined sand aquifers and the largest concentrations were in water from the confining unit. Water in the Calumet aquifer had the largest range of DO concentrations.

Comparison of concentrations of DO in water from multiple wells screened at different depths at 12 sites indicated a decrease in DO with increasing depth. Smaller concentrations of DO were measured in water from deep wells than from shallow wells at 9 sites. At two sites, concentrations of DO were larger in water from deep wells; and at one site, concentrations in water from the shallow and deep wells were similar.

Specific Conductance

SC is a measure of the capability of a substance to conduct electricity across a unit length at a specific temperature. The SC of pure water is low, less than $10 \mu S/cm$. Substances dissolved in the water increase the conductivity, so measurements of SC provide an indication of the amount of dissolved solids in the water (Hem, 1985, pp. 66–67).

SC was measured in water samples from 125 wells (table 15). Values of SC ranged from 106 to 5,980 μ S/cm; the median was 828 μ S/cm. The smallest SC was measured in water from well 122 (S-087), which is completed in the Calumet aquifer in a residential area between Wolf Lake and the Calumet River. The largest SC was measured in water from well 19 (S-067), which is completed in the confining unit in an area of fill southwest of Lake Calumet. Half of the measured SC values were between 450 and 1,540 μ S/cm.

Median values of SC for each of the four geohydrologic units indicated that relatively large values of SC (greater than 1,000 μ S/cm) were measured most frequently in water from wells in the confining unit and least frequently in water from the confined sand and Silurian-Devonian aquifers (table 15). The range of SC values in water from the confining unit was larger than the ranges for the three aquifer units.

Comparison of SC measurements for 16 multiple-well sites indicated a slight trend toward increasing SC with increasing depth. SC was largest in water from deep wells at 10 sites, largest in water from shallow wells at 5 sites, and similar at 1 site. Precipitation that recharges the ground water probably has small SC values. Willoughby (1995) reported that precipitation at Gary, Ind., has a median SC of about 22 μ S/cm. As the water moves through the sediments, soluble materials are dissolved in the water, thereby increasing the SC.

Under natural conditions and in homogeneous sediments, water from deep wells generally would have a larger SC than water from shallow wells because water from deep wells has been in contact with the sediments for a much longer time.

The distribution of measured SC values in water from wells completed near the water table in the Calumet aquifer and the confining unit is shown on figure 3. The general increase in SC from east to west across the study area indicates that ground water in the eastern part of the study area contains less dissolved substances than ground water in the western part of the study area. The distribution of SC in ground water can be explained partly by the larger percentage of silt and clay in the sediments in the western part of the study area compared to the eastern part of the study area; however, the largest values of SC probably are due to changes in the chemistry of the ground water resulting from urbanization, industrial activities, and waste disposal. The largest values of SC were measured in water from wells in industrial areas around Lake Calumet, along the Lake Michigan shoreline, and near the Indiana Harbor Canal.

Laboratory Analyses

Discussion of results of the laboratory analyses are divided into five categories: water-quality properties and common ions, trace elements and cyanide, VOC's, SVOC's, and compounds containing pesticides or PCB's. Summary statistics for each set of analyses are presented in the text, and results of all analyses are presented in appendix 3.

Water-Quality Properties and Common Ions

Water-quality properties determined for this study are acidity, alkalinity, dissolved and suspended solids, and total organic carbon. Concentrations were determined for 10 common ions: ammonia nitrogen, calcium, chloride, iron, magnesium, manganese, potassium, silica, sodium, and

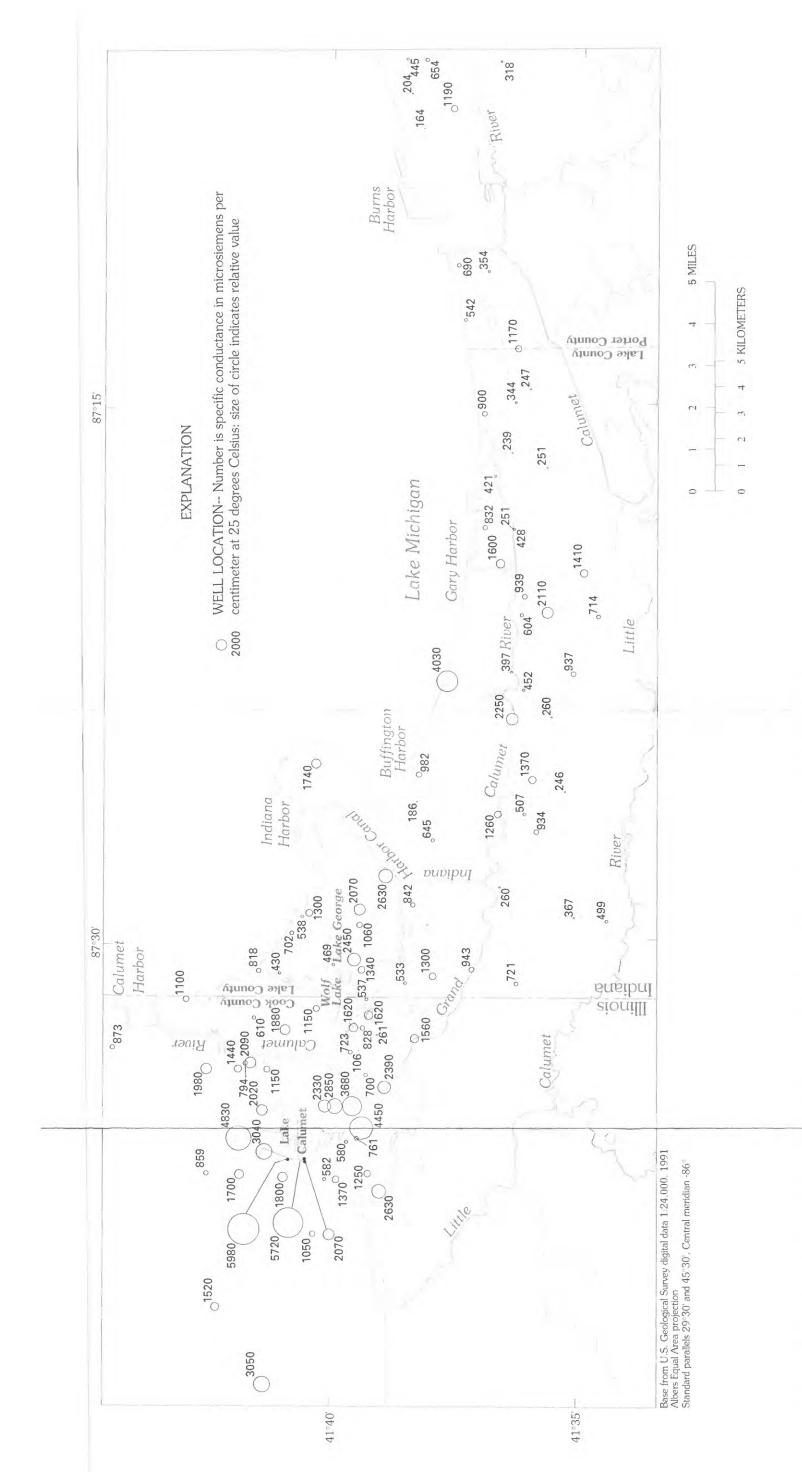
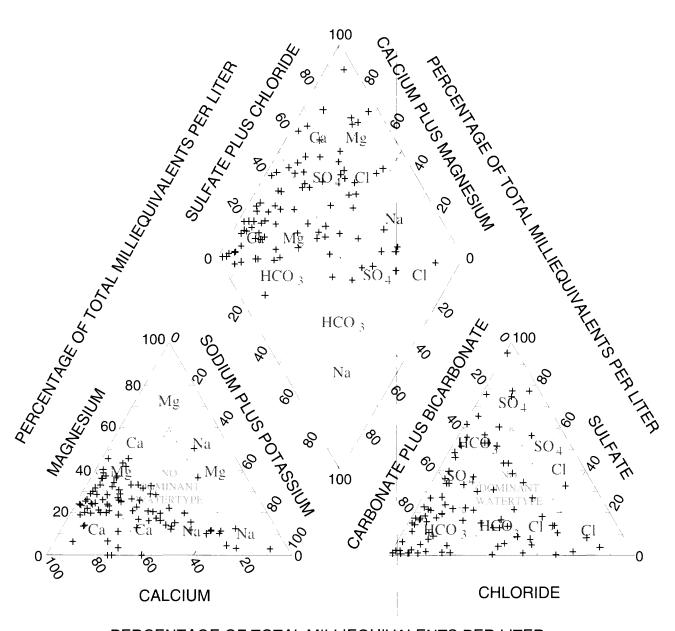


Figure 3. Specific conductance of water from shallow wells in the Calumet Region, Indiana and Illinois, June 1993.

sulfate (table 16, appendix 3). The water-quality properties are either measurements of general properties (such as alkalinity) or determinations of concentrations of more than one substance (such as dissolved solids). The common ions are abundant, naturally occurring substances that are readily soluble in water and therefore constitute most of the dissolved substances in water. Ammonia nitrogen, the only nutrient analyzed for in this study, is included with the common ions. Iron and manganese commonly are reported as trace elements; however, they are grouped with common ions in this report because of the frequency of detection and relatively large concentrations compared to trace elements in this study. Analyses of water-quality properties and common-ion concentrations provide a basis for describing the general ground-water chemistry of the study area.

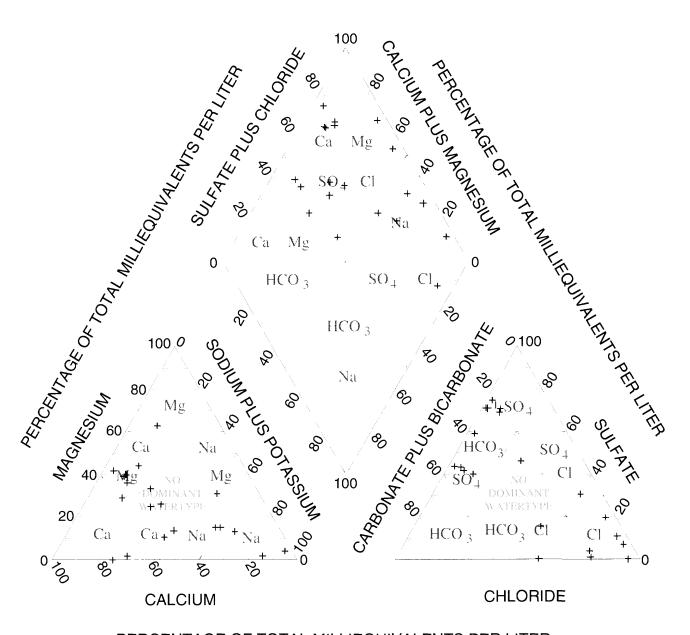
In order to compare chemical equivalence of the reported concentrations of ions in the water samples, the analytical results of selected waterquality characteristics and common ions were converted to milliequivalents per liter. Concentrations expressed as milliequivalents per liter account for differences in atomic weight and ionic charge of the ions considered in the analysis (Hem, 1985, p. 55-56). The total concentration of cations and anions in a sample can be calculated, and concentrations of specific ions can be expressed as percentages of those totals. Cations considered in this discussion are calcium, magnesium, sodium, and potassium. Anions considered are carbonate and bicarbonate (concentrations derived from alkalinity determinations), sulfate, and chloride. A multiple-technique computer program (Briel, 1993) was used to plot the results on trilinear diagrams to illustrate the general water quality.

Sample results are discussed in terms of the four geohydrologic units in the study area: the Calumet aquifer, the confining unit, confined sand aquifers, and the Silurian-Devonian aquifer. For this report, an ion is considered dominant if it comprises 50 percent or more of the total milliequivalents per liter of cations or anions in the sample. For all samples except three, the data are sufficient to be included in the discussion.


Samples from wells I15 (S-51) and BH24 (S-57) were mislabeled, so it is uncertain which results correspond to which sample. The sample from FILO6 (S-128) was not included because the sample volume was insufficient for laboratory analysis.

Water from 90 wells in the Calumet aquifer had a wide range of chemistry, although 42 percent of the samples from this group were classified as calcium bicarbonate water types (fig. 4). Calcium was the dominant cation in water from 55 wells, sodium was the dominant cation in water from 11 wells, and magnesium was the dominant cation in water from 1 well in this group. Water from 23 wells contained no dominant cation. The dominant anion was bicarbonate in water from 48 wells, sulfate in water from 15 wells, and chloride in water from 12 wells. No dominant anion was determined for water from 15 wells.

Water from 38 wells in the Calumet aquifer was a calcium bicarbonate type, water from 11 wells was a calcium sulfate type, water from 6 wells was a sodium chloride type. The dominant cationanion pairs were sodium bicarbonate for water from two wells, calcium chloride for water from one well, and magnesium bicarbonate for water from one well. Samples from the remaining 31 wells were classified as mixed water types.


The varied amounts of common ions in water from wells in the Calumet aquifer are explained easily by natural variation resulting from dissolution of soluble materials in the sediments that constitute this geohydrologic unit. Two exceptions, which may have resulted from human activities, are the presence of sulfate and chloride. The presence of sulfate may be related to disposal of slag or ash from coal burning. Except for well BH7S (S-065), the wells that contain water having large concentrations of sulfate are in areas of made or modified land. The presence of sodium chloride in water from shallow wells may be the result of roadway deicing salts.

Water from 21 wells in Illinois that are completed in the confining unit indicated no dominant water type for this geohydrologic unit (fig. 5).

PERCENTAGE OF TOTAL MILLIEQUIVALENTS PER LITER

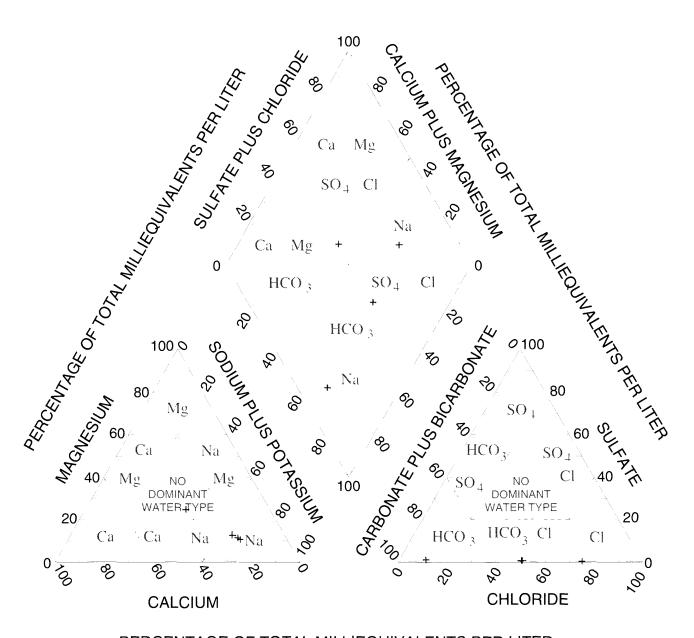
Figure 4. Principal ion chemistry of water from wells in the Calumet aquifer in the Calumet Region, Indiana and Illinois, June 1993.

PERCENTAGE OF TOTAL MILLIEQUIVALENTS PER LITER

Figure 5. Principal ion chemistry of water from wells in the confining unit in the Calumet Region, Indiana and Illinois, June 1993.

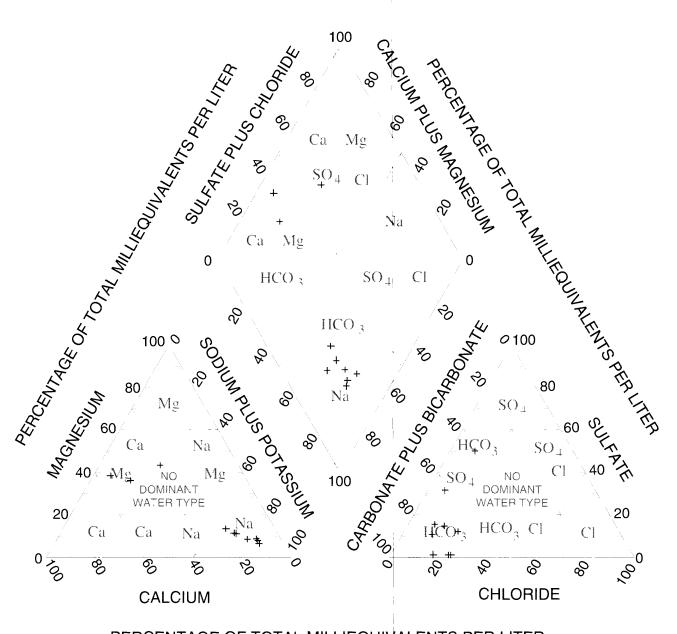
Calcium was the dominant cation in water from seven wells, sodium was the dominant cation in water from six wells, and magnesium was the dominant cation in water from 1 well in this group. Seven wells produced water that contained no dominant cation. The dominant anion was chloride in water from nine wells, sulfate in water from seven wells, and bicarbonate in water from three wells. No dominant anion was determined for water from two wells.

Water from wells BH1D (S-089), BH1S (S-090), BH26 (S-039), and BH29 (S-038) was a calcium sulfate type; water from wells I1 (S-032), I3 (S-086), I8 (S-068), I9 (S-067), and I13 (S-033) was a sodium chloride type; and water from wells BH16S (S-115) and BH30 (S-029) was a calcium bicarbonate type. The dominant cation-anion pairs were calcium chloride for water from well I2 (S-102) and magnesium sulfate for water from well FILO2 (S-127). Samples from the remaining eight wells were classified as mixed water types.


The various water types produced from wells in the confining unit do not appear to be geographically defined, except for four wells (I1, I3, I8, and I9) that produced sodium chloride water; these wells are in an area of modified land southwest of Lake Calumet near wastewater-treatment and solid-waste-disposal facilities. The only other water in which sodium chloride was the dominant ion pair was from well I13. All these wells are shallow (15 ft deep or less) and are near interstate highways. The presence of sodium chloride in water from these wells may indicate the effects of roadway deicing salts on shallow ground water in these areas.

Water from the four wells screened in confined sand aquifers in the eastern part of the study area was varied in chemical composition (fig. 6). Water from well 244-125 (S-0520) was a sodium bicarbonate water type, and water from well 230-138 (S-010) was a sodium chloride type. Sodium also was the dominant cation in water from well 234-142 (S-005). Water from well 105 (S-083) contained no dominant cation. Wells 234-142 and 105 produced water containing bicarbonate and chloride in approximately equal percentages.

The differences in chemical composition of the water from these four wells is explained by the geohydrologic unit in which each well is screened. Wells 230-138, 234-142, and 244-125 are screened in a deep (119-135 ft below land surface) sand and gravel unit referred to by Shedlock and others (1994, p. 17) as the "basal sand aquifer." The basal sand aquifer directly overlies the bedrock and is continuous east of the study area but is present only in scattered locations in the study area. Well 105 is screened in a subtill aquifer that is stratigraphically higher than and separate from the basal sand (Shedlock and others, 1994, p. 17). Because these sand aquifers are discontinuous. there is no reason to assume that their water chemistry would be similar. Instead, the chemistry of the water is determined by the position of the well screen in the ground-water-flow path and by the types of sediments to which the water was exposed.


Water from wells in the Silurian-Devonian aquifer was predominately a sodium bicarbonate type (fig. 7). Sodium was the dominant cation in water from 7 of the 10 wells in this aquifer. Water from well BH4D (S-055) was a calcium bicarbonate type, but it contained a substantial amount (38 percent) of magnesium. Water from wells BH6 (S-054) and FILO5 (S-126) contained no dominant cations. Bicarbonate was the dominant anion in water from all wells in the Silurian-Devonian aquifer except FILO5, which contained slightly more sulfate than bicarbonate.

Differences in water chemistry among wells in the Silurian-Devonian aquifer can be explained by the position of the wells with respect to the groundwater-flow path. Wells BH4D and BH6 are shallow (less than 33 ft deep) and are in the part of the study area where the Silurian-Devonian aquifer is unconfined. Water from these wells is slightly acidic (pH less than 7) and derives its chemistry primarily from recharge water that dissolves calcium and magnesium from the carbonate bedrock. The remaining wells in the Silurian-Devonian aguifer are relatively deep (more than 58 ft) and are in areas where the aquifer is confined. Except for FILO5, samples from these wells had water chemistry indicating that the water changes chemically as it moves deeper into the aquifer. Water from the deep wells

PERCENTAGE OF TOTAL MILLIEQUIVALENTS PER LITER

Figure 6. Principal ion chemistry of water from wells in confined-sand aquifers in the Calumet Region, Indiana and Illinois, June 1993.

PERCENTAGE OF TOTAL MILLIEQUIVALENTS PER LITER

Figure 7. Principal ion chemistry of water from wells in the Silurian-Devonian aquifer in the Calumet Region, Indiana and Illinois, June 1993.

in the Silurian-Devonian aquifer is basic (pH greater than 7), an indication that the water has lost much of its capability to dissolve calcium and magnesium. The change in cation dominance results from preferential cation exchange when water that is saturated with dissolved calcium and magnesium comes into contact with clay minerals containing sodium (Freeze and Cherry, 1979, p. 287). Shale deposits that contain clay minerals are found within the bedrock in the study area (Shaver and others, 1986, p. 163–164; Willman, 1971, p. 29–30).

Water from well FILO5 differs from water from the other wells in the Silurian-Devonian aquifer. This well, as shown in other sections of this report, produces water that contains large amounts of dissolved substances. Well FILO5 is 80 ft deep and is near a waste-disposal facility southwest of Lake Calumet. The chemistry of the water from this well probably is not indicative of any natural process occurring throughout the aquifer.

Acidity and Alkalinity

Acidity and alkalinity were determined for samples from 125 wells (table 16, appendix 3). Alkalinity is a measure of the capacity of a solution to neutralize acids (Hem, 1985, p. 106). Acidity is a measure of a solution's capacity to neutralize bases. Alkalinities for all samples ranged from 24.9 to 1,260 mg/L as calcium carbonate. Acidity was not detected in any samples.

The median alkalinity for water from the confining unit was slightly larger than median alkalinities for the three other geohydrologic units (table 17). Water from confined sand aquifers and the Silurian-Devonian aquifer had the smallest median alkalinities. The largest range of alkalinities was in water from the confining unit. Only one well, FILO1 (S-123), produced water having an alkalinity larger than 1,000 mg/L. This well is near an area of waste disposal, southwest of Lake Calumet. Wells 230-24 (S-017), D-5A (S-020), W-1A (S-028), MW-5 (S-042), I10 (S-064), B10 (S-077), BH18S (S-091), BH18I (S-109), and WS7 (S-121) produced water having alkalini-

ties less than 100 mg/L. Seven of these wells are screened in the Calumet aquifer, and two are screened in the confining unit.

Comparison of alkalinity values for water from 17 sets of paired wells indicates that alkalinity generally decreased with increasing depth. Alkalinities were largest in water from shallow wells at 12 sites, largest in water from deep wells at 5 sites, and largest in water from an intermediate-depth well at 1 site.

Ammonia Nitrogen

Concentrations of ammonia nitrogen were determined for water from 121 wells (table 16, appendix 3). Detected concentrations of ammonia nitrogen ranged from 0.1 mg/L in water from seven wells to 96 mg/L in water from well FILO2 (S-127). Ammonia nitrogen was not detected in 17 samples. Ammonia nitrogen was detected in concentrations larger than 10 mg/L in water from eight wells: I1 (S-032), I13 (S-033), A3 (S-044), I10 (S-064), I8 (S-068), I2 (S-102), BH32 (S-110), and FILO2 (S-127). All of these wells are in or near areas of waste disposal or made or modified land. The second largest concentration of ammonia nitrogen was detected in water from well A3 (S-044), which is in an industrial area north of the Grand Calumet River and east of Gary Harbor. Large concentrations of ammonia nitrogen could indicate contamination resulting from disposal of sewage or organic waste (Hem, 1985, p. 124).

Median concentrations among the four geohydrologic units were largest in water from the confining unit and smallest in water from the Silurian-Devonian aquifer (table 17). The median concentration for water from the Calumet aquifer was slightly larger than the median concentration for water from confined sand aquifers, an indication that concentrations of ammonia nitrogen may decrease with increasing depth. However, comparison of concentrations of ammonia nitrogen in water from paired wells indicates an increase

Table 17. Statistical summary of water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993 [mg/L, milligrams per liter; n.d., not detected; <, less than]

Property or constituent	Geohydrologic unit	Number of samples	Median concentration (mg/L)	Minimum concentration (mg/L)	Maximum concentration (mg/L)
Acidity	All units	125	n.d.	n.d.	n.d.
			• 40	• • •	
Alkalinity	All units	125	249	24.9	1,260
	Calumet aquifer	90	249	24.9	657
	Confining unit	21	304	53.7	1,260
	Confined sand aquifers	4	196.5	176	213
	Silurian-Devonian aquifer	10	201	160	814
Ammonia nitrogen	All units	121	.50	<.01	96
minoma marogen	Calumet aquifer	88	.55	<.01	90.3
	Confining unit	19	1.30	<.01	96
	Confined sand aquifers	4	.36	.31	.6
	Silurian-Devonian aquifer	10	.30	.10	.0 .9
	Shurian-Devoman aquirei	10	.30	.10	.9
Calcium	All units	128	112.5	5.58	565
	Calumet aquifer	92	108.5	10.7	565
	Confining unit	22	202.5	5.58	528
	Confined sand aquifers	4	41.2	20.2	68.8
	Silurian-Devonian aquifer	10	15.1	9.18	320
Chloride	All units	125	37.8	1.4	2,600
Chioride	Calumet aquifer	90	34.4	1.4	972
	=	21	188	13.0	2,600
	Confining unit	4	131	18.5	434
	Confined sand aquifers	10	33.2	21.1	145
	Silurian-Devonian aquifer	10	33.2	21.1	143
Dissolved solids	All units	125	674	95	6,780
	Calumet aquifer	90	650.5	95	4,390
	Confining unit	21	2,116	259	6,780
	Confined sand aquifers	4	418	266	963
	Silurian-Devonian aquifer	10	308	218	3,100
ron	All units	128	1.255	.014	58.4
	Calumet aquifer	92	1.985	.014	52.2
	Confining unit	22	.242	<.016	58.4
	Confined sand aquifers	4	.999	.295	1.98
	Silurian-Devonian aquifer	10	.1195	.037	.654
	Silulian-Devoman aquilei	10	.1195	.05/	٠٠٠٠
Magnesium	All units	128	24.3	.046	794
	Calumet aquifer	92	23.7	.046	301
	Confining unit	22	67.8	.051	794
	Confined sand aquifers	4	16.7	6.85	24.9
	Silurian-Devonian aquifer	10	6.04	3.97	265

²⁸ Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 17. Statistical summary of water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Property or constituent	Geohydrologic unit	Number of samples	Median concentration (mg/L)	Minimum concentration (mg/L)	Maximum concentration (mg/L)
Manganese	All units	128	0.2175	<0.0016	3.33
	Calumet aquifer	92	.238	<.0016	3.33
	Confining unit	22	.337	.002	2.46
	Confined sand aquifers	4	.0368	.0208	.082
	Silurian-Devonian aquifer	10	.0101	.0029	.335
Potassium	All units	128	4.58	.459	161
	Calumet aquifer	92	4.56	.459	161
	Confining unit	22	10.2	2.47	135
	Confined sand aquifers	4	1.92	1.23	2.32
	Silurian-Devonian aquifer	10	3.11	2.08	8.14
Silica	All units	120	16.2	3.2	51.8
	Calumet aquifer	89	16.5	3.2	51.8
	Confining unit	19	19.0	3.4	34.0
	Confined sand aquifers	4	11.75	10.9	13.1
	Silurian-Devonian aquifer	8	10.6	7.43	13.0
Sodium	All units	128	53.7	1.11	1,450
	Calumet aquifer	92	36.2	1.11	570
	Confining unit	22	182	21.9	1,450
	Confined sand aquifers	4	95.65	74.1	243
	Silurian-Devonian aquifer	10	70.3	15.0	279
Sulfate	All units	125	78	<5	3,850
	Calumet aquifer	90	77.5	<5	2,070
	Confining unit	21	264	<5	3,850
	Confined sand aquifers	4	< 5	<5	<5
	Silurian-Devonian aquifer	10	34	<5	970
Suspended solids	All units	125	18.5	<3	5,312
•	Calumet aquifer	90	13.7	<3	1,754
	Confining unit	21	47.5	6.5	920
	Confined sand aquifers	4	173	10	463
	Silurian-Devonian aquifer	10	278	5	5,312
Total organic carbon	All units	126	7.65	<2	209
	Calumet aquifer	90	7.1	<2	209
	Confining unit	22	10.9	3.3	123
	Confined sand aquifers	4	4	2.1	5.2
	Silurian-Devonian aquifer	10	7.1	<2	82.9

in concentrations with increasing depth. Concentrations of ammonia nitrogen were largest in water from deep wells at 10 sites and largest in water from shallow wells at 6 sites.

Calcium

Concentrations of calcium determined for samples from 128 wells (table 16, appendix 3) ranged from 5.58 to 565 mg/L; the median concentration was 112.5 mg/L. Calcium was the dominant cation in water from 63 of the 125 wells for which percentages of cations and anions were calculated. Water from the confining unit had the largest median concentration and water from the Silurian-Devonian aquifer had the smallest median concentration. The median concentration of calcium for water from confined sand aquifers was about half that of water from the Calumet aquifer (table 17).

Concentrations of calcium in water from paired wells show no consistent trend with depth. Concentrations of calcium were largest in water from shallow wells at 9 sites, largest in water from deep wells at 7 sites, and largest in water from an intermediate-depth well at 1 site.

Chloride

Concentrations of chloride determined for samples from 125 wells (table 16, appendix 3) ranged from 1.4 mg/L in water from well MW5 (S-042) to 2,600 mg/L in water from well I2 (S-102). The median concentration was 37.8 mg/L. Chloride was the dominant anion in water from 22 of the 125 samples for which percentages of cations and anions were calculated. Chloride concentrations in water from 28 wells exceeded the SMCL of 250 mg/L. Six wells produced water containing concentrations of chloride larger than 1,000 mg/L. Five of these wells are southwest of Lake Calumet near a wastewater-treatment facility. In addition, the six wells are shallow (15 ft deep or less), screened in the confining unit in areas containing fill, and near interstate highways, indicating the possibility of contamination of the shallow ground water by compounds in the fill materials and by highway deicing salts.

The median chloride concentration was largest for water from the confining unit and confined sand aquifers and smallest for water from the Calumet and Silurian-Devonian aquifers (table 17). Water from the confining unit had the largest range of chloride concentrations, and water from the Silurian-Devonian aquifer had the smallest range of chloride concentrations. Chloride concentrations were largest in water from shallow wells at nine paired-well sites and were largest in water from deep wells at seven sites.

Dissolved Solids

Concentrations of dissolved solids were determined for water samples from 125 wells (table 16, appendix 3). Concentrations of dissolved solids ranged from 95 mg/L in water from well W-1A (S-028) to 6,780 mg/L in water from well I2 (S-102): the median concentration was 674 mg/L (table 17). The largest median concentration of dissolved solids for the four geohydrologic units was for water from the confining unit. Water from the Silurian-Devonian aguifer had the smallest median concentration. Median concentrations for the confining unit and the Calumet aguifer exceed the SMCL of 500 mg/L. Comparison of dissolvedsolids concentrations for water from 16 paired wells indicates larger concentrations in shallow wells than in deep wells at these sites. Concentrations of dissolved solids were largest in water from shallow wells at 10 sites and were largest in water from deep wells at 6 sites.

Water that is categorized as fresh generally contains concentrations of dissolved solids less than 1,000 mg/L. Water having concentrations of dissolved solids between 1,000 and 10,000 mg/L is categorized as brackish (Freeze and Cherry, 1979, p. 84). On the basis of this classification, brackish water was found in 41 of the sampled wells, although concentrations of dissolved solids in 22 of those wells were less than 2,000 mg/L. The median concentration of dissolved solids for water from the confining unit indicates brackish water in more than half of the wells sampled in this geohydrologic unit (table 17). Water from 11 wells had

concentrations of dissolved solids that exceeded 3,000 mg/L. All these wells are near areas of waste disposal or filled land.

Iron

Detected concentrations of iron, determined for water from 128 wells (table 16, appendix 3), ranged from 0.014 mg/L in water from well B2 (S-048) to 58.4 mg/L in water from well I1 (S-032). The median iron concentration for all samples was 1.26 mg/L (table 17). The median concentration for iron is larger than general concentrations shown for northwestern Indiana by Clark (1980, p. 84), although it is similar to concentrations reported elsewhere in Indiana. Iron was not detected in concentrations larger than 0.155 mg/L in water from four wells: BH1D (S-089), BH14 (S-094), BH12 (S-097), and C2 (S-129). The SMCL for iron is 0.3 mg/L (U.S. Environmental Protection Agency, 1992). This limit was exceeded in 83 samples; in 59 samples, concentrations of iron were larger than five times the SMCL. The SMCL was exceeded in 75 percent of the samples from confined sand aquifers, 70 percent of the samples from the Calumet aquifer, 59 percent of the samples from the confining unit, and 30 percent of the samples from the Silurian-Devonian aquifer.

Magnesium

Concentrations of magnesium determined for water from 128 wells (table 16, appendix 3) ranged from less than 0.046 mg/L in water from well BH31 (S-036) to 794 mg/L in water from well FILO2 (S-127). The median concentration for all samples was 24.4 mg/L. Magnesium was the dominant cation in only 2 of the 125 samples for which percentages of cations and anions were calculated. The concentration of magnesium in well FILO2 was about 2.5 times that of the next largest magnesium concentration determined for this study. Well FILO2 is near an area of waste disposal southwest of Lake Calumet. Well BH31 produced the only sample in which magnesium was not detected. This well is in an area of slag-filled land near Wolf Lake. Water from this well had a pH of 12.1.

Depending on the dissolved concentration, temperature, and pressure, magnesium may precipitate from solution at pH greater than 6 and cannot remain in solution at pH greater than 12 (Stumm and Morgan, 1981, p. 272). Wells B2 (S-048), BH1D (S-089), C2 (S-128), and E7 (S-025) produced water in which pH was greater than 10 and magnesium concentrations were less than 1 mg/L. Except for well BH1D, all these wells are in areas of slag disposal.

The median concentration of magnesium for water from the confining unit was 2.9 to 11.2 times the median concentrations for the three other geohydrologic units (table 17). Water from the Silurian-Devonian aquifer had the smallest median concentration of magnesium. The range of magnesium concentrations was largest in water from the confining unit and smallest in water from confined sand aquifers. Among paired wells, concentrations of magnesium were largest in water from shallow wells at 11 sites and largest in water from deep wells at 5 sites. At a site where three wells were sampled, the concentration of magnesium was largest in water from the intermediate-depth well.

Manganese

Concentrations of manganese were determined for water from 128 wells (table 16, appendix 3). Manganese was not detected in water from six wells: B7 (S-069), B10 (S-077), 106 (S-084), and BH1D (S-089), E2 (S-014), and BH31 (S-036). Detected concentrations of manganese ranged from 0.002 mg/L in water from well C2 (S-129) to 3.33 mg/L in water from well C18 (S-076). The median manganese concentration for all samples exceeded the SMCL of 0.05 mg/L established for manganese by USEPA (1992). The SMCL was exceeded in water from 92 wells and was detected at five times the SMCL in water from 43 wells. The SMCL was exceeded in 86 percent of the samples from wells in the confining unit, 75 percent of the samples from wells in the Calumet aquifer, 50 percent of the samples from wells in confined sand aquifers, and 20 percent of the samples from wells in the Silurian-Devonian aguifer.

Median concentrations of manganese were similar for water from the confining unit and Calumet aquifer (table 17) but were much larger than median concentrations for the Silurian-Devonian and confined sand aquifers; this pattern indicates a decrease in manganese concentrations with an increase in depth. However, comparison of manganese concentrations in water from 17 sets of paired wells indicates no apparent trend. Concentrations of manganese are largest in water from shallow wells at eight sites, largest in water from deep wells at seven sites, and largest in water from intermediate-depth wells at two sites.

Potassium

Concentrations of potassium for samples from 128 wells (table 16, appendix 3) ranged from 0.459 mg/L in water from well LK13 (S-118) to 161 mg/L in water from well B2 (S-048). The median potassium concentration for all samples was 4.58 mg/L. Potassium was not detected in the abundance that other common cations (such as calcium and sodium) were detected, nor was it the dominant cation in any of the 125 samples for which percentages of cations and anions were calculated. Potassium was detected in concentrations larger than 100 mg/L in water from only three wells: B2 (S-048), D25 (S-037), and I13 (S-033). All of these wells are in industrial areas or areas of made or modified land.

Of the four geohydrologic units, the confining unit had the largest median concentration of potassium, and confined sand aquifers had the smallest median concentration (table 17). The largest range of potassium concentrations was in water from the Calumet aquifer, and the smallest range was in water from confined sand aquifers. Comparison of potassium concentrations in water from paired wells indicates a general increase in potassium concentrations with increasing depth. Concentrations of potassium were largest in water from shallow wells at 5 sites, largest in water from deep wells at 10 sites, and largest in water from an intermediate-depth well at 2 sites.

Silica

Concentrations of silica determined for water from 120 wells (table 16, appendix 3) ranged from 3.2 mg/L in water from well B2 (S-048) to 51.8 mg/L in water from well WS7 (S-121); the median concentration was 16.2 mg/L. The largest median concentration of silica was water from the confining unit and the largest range of concentrations were in water from the Calumet aquifer (table 17). The smallest median concentration of silica was in water from the Silurian-Devonian aquifer. The smallest range of silica concentrations was in water from confined sand aquifers. Comparison of silica concentrations in water from 15 sets of paired wells indicates that the largest concentrations were generally in water from shallow wells at these sites. Silica concentrations were largest in water from shallow wells at 10 sites, largest in water from deep wells at 4 sites, and largest in water from an intermediate-depth well at 1 site.

Sodium

Concentrations of sodium determined for samples from 128 wells (table 16, appendix 3) ranged from 1.11 mg/L in water from well MW5 (S-042) to 1.450 mg/L in water from well I3 (S-086). The median concentration for all samples was 53.7 mg/L. Sodium was the dominant cation in water from 27 of the 125 samples for which percentages of cations and anions were calculated.

The largest median concentration of sodium among the four geohydrologic units was for water from the confining unit (table 17). Water from the Calumet aquifer had the smallest median concentration of sodium. The largest range of sodium concentrations was in water from the confining unit, and the smallest range was in water from confined sand aquifers. Comparison of sodium concentrations in water from paired wells indicates no consistent trend in concentration related to depth of well. Concentrations of sodium were largest in water from shallow wells at seven sites, largest in water from the deep wells at nine sites, and largest in water from an intermediate-depth well at one site.

Sulfate

Concentrations of sulfate determined for water from 125 wells (table 16, appendix 3) ranged from not detected (less than 5 mg/L) in water from 21 wells to 3,850 mg/L in water from well FILO2 (S-127). The median sulfate concentration for all samples was 78 mg/L. Sulfate was the dominant anion in water from 22 of the 125 samples for which percentages of cations and anions were calculated. Sulfate concentrations exceeded the 250-mg/L SMCL in water from 32 wells and exceeded 1,000 mg/L in water from 8 wells. Except for well BH29 (S-038), these wells are in industrial areas, near waste disposal, or in areas of made or modified land.

Among the four geohydrologic units, the median concentration of sulfate and the range of sulfate concentrations were largest for water from the confining unit. Water from confined sand aquifers had the smallest median concentration. Sulfate was not detected in water from any of the wells in confined sand aquifers and was not detected in at least one sample from each of the other three geohydrologic units. Comparison of sulfate concentrations in water from 16 sets of paired wells indicates that sulfate concentrations were largest in water from shallow wells at 12 sites and largest in water from deep wells at 4 sites.

Suspended Solids

Concentrations of suspended solids were determined for 125 water samples (table 16, appendix 3). Suspended solids were not detected in 18 samples. Detected concentrations ranged from 3 mg/L in water from well C4 (S-105) to 5,312 mg/L in water from well I2 (S-102); the median concentration was 18.5 mg/L (table 17). Of the 18 samples in which suspended solids were not detected, 17 were from wells screened in the Calumet aquifer and 1 was from a well screened in a confined sand aquifer. Suspended-solids concentrations may be more indicative of conditions in the immediate vicinity of a well more than they represent a characteristic of ground-water quality.

A well having a poorly sized well screen—or in the case of some bedrock wells, no screen—may yield water having larger concentrations of suspended solids than a well that properly has been screened and developed.

Median concentrations of suspended solids were largest for water from the Silurian-Devonian and confined sand aquifers. Comparison of suspended-solids concentrations in water from 16 paired wells also indicates a general increase in suspended solids with an increase in well depth. Concentrations of suspended solids were largest in water from deep wells at 13 sites and were largest in water from shallow wells at 3 sites.

Total Organic Carbon

Concentrations of total organic carbon (TOC) were determined for water from 126 wells (table 16, appendix 3). Detected concentrations ranged from 2.1 mg/L in water from wells BH15 (S-063) and 105 (S-083) to 209 mg/L in water from well BH32 (S-110). TOC was not detected in water from nine wells. The median TOC concentration for all samples was 7.65 mg/L. Water from four wells—I13 (S-033), BH32 (S-110), I20 (S-119), and FILO2 (S-127)—had concentrations of TOC larger than 100 mg/L. These wells are located around Lake Calumet in areas of made or modified land or near wastedisposal sites.

TOC is a measurement of the organic content of the water sample. All natural water contains organic compounds in the form of humic and fulvic acids. Generally, concentrations in ground water are small, 0.1 to 10 mg/L (Freeze and Cherry, 1979, p. 86). Larger concentrations may indicate contamination by organic compounds at waste-disposal sites (Hem, 1985, p. 152). Organic material can affect water chemistry by changing pH and by modifying the adsorption of metals on sediments (Drever, 1982, p. 304–305).

Among the four geohydrologic units, the median concentration of TOC was largest for water from the confining unit and smallest for water from confined sand aquifers. Water from the Silurian-Devonian and Calumet aquifers had similar median

concentrations. Concentrations of TOC at 17 sets of paired wells indicate no apparent trend with depth. TOC concentrations were largest in water from shallow wells at 7 sites and largest in water from deep wells at 10 sites.

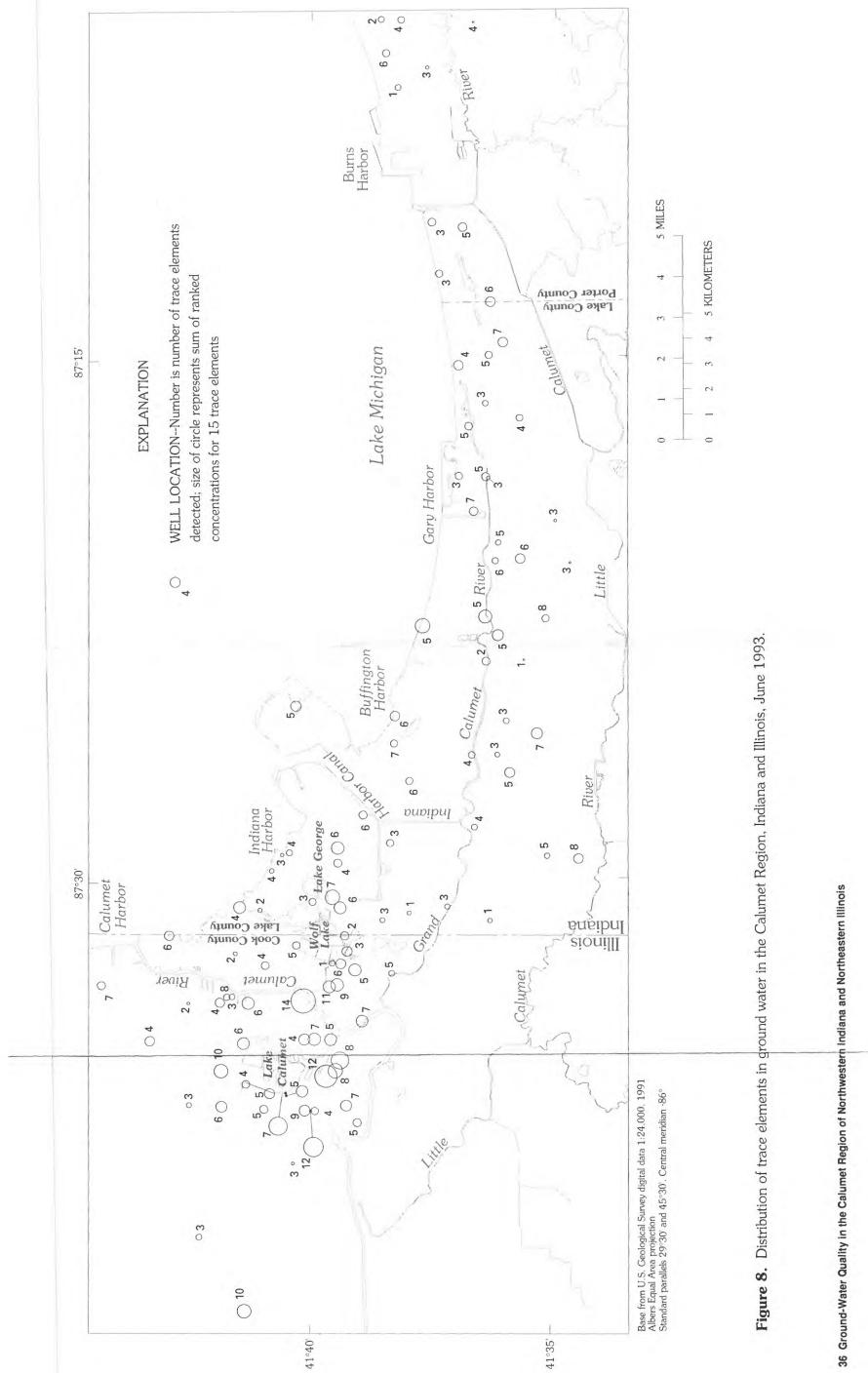
Trace Elements and Cyanide

Trace elements are natural substances that are present in the earth's crust in varied amounts. In water, they generally are found at much smaller concentrations than are the common ions. Human activities can increase concentrations of trace elements through industrial processes that use these substances and through disposal of waste that contains trace elements. The solubility of trace elements depends on the characteristics of the individual element and on other properties of water, such as pH; however, all are at least somewhat soluble in water and therefore are potential groundwater contaminants. Cyanide is a carbon-nitrogen compound that can occur naturally, although it is commonly associated with various industrial processes and has been used widely as a pesticide. The presence of cyanide in ground water may indicate waste disposal (Hem, 1985, p. 124).

Results of analyses for 17 trace elements and cyanide are listed in table 18 (appendix 3) and are summarized in table 19. All samples contained at least one trace element. Except for silver, each trace element was detected in at least one sample. Arsenic, barium, lead, mercury, and thallium were detected in more than half of the samples. Barium, the most frequently detected trace element, was found in all but one sample. Aluminum, nickel, selenium, vanadium, and zinc were detected in 25 to 50 percent of the samples. Cobalt, copper, and cyanide were detected in 10 to 24 percent of the samples. Antimony, beryllium, cadmium, and chromium were detected in less than 10 percent of the samples.

Although 16 trace elements and cyanide were detected in samples from wells screened in the Calumet aquifer, trace elements were detected in a

larger percentage of samples from wells screened in the confining unit than from wells completed in the other three geohydrologic units. The confining unit consists of fine-grained sediments, including clay particles that can attract many trace elements through ion exchange and molecular bonds (Freeze and Cherry, 1979, p. 127). The Calumet aquifer, confined sand aquifers, and Silurian-Devonian aquifer contain a much smaller percentage of clay particles than the confining unit. Therefore, the larger percentage of detections in samples from wells screened in the confining unit probably represents trace elements that are concentrated in these sediments by natural processes.


Detected concentrations for each trace element from all of the wells in the study area were ranked from lowest to highest; the ranks for each sample were summed to allow comparison among samples and provide a means of illustrating the distribution of trace elements in the study area. This method was selected because the trace elements have varied toxicities which make direct comparison misleading. For example, arsenic is more toxic than copper, which is more toxic than zinc. Silver is not included in this analysis because it was not detected in any samples. Thallium is not included because the results for this trace element are incomplete, as explained later in this report.

The distribution of trace elements (fig. 8) indicates that the largest concentrations were in samples from wells in areas south of and between Lake Calumet and Wolf Lake. Water from several wells in residential areas south of the Grand Calumet River and in the northwest part of the study area had moderate concentrations of trace elements. Moderate concentrations also were detected in samples from wells along the Lake Michigan shoreline and along the Grand Calumet River in the central part of the study area. Many of the samples having large concentrations of trace elements were from wells in industrial areas or near areas of waste disposal or fill, an indication that contamination of ground water by trace elements has resulted from human activities.

Table 19. Maximum Contaminant Levels and Secondary Maximum Contaminant Levels for selected trace elements and cyanide and summary of detections in [µg/L, microgram per liter; --, no regulation; n.d., no data. Source: U.S. Environmental Protection Agency, 1992] ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993

Element	Laboratory quantitation limits (smallest amount detectable)	Number of wells for which element was detected in sample	Range of detected concentrations (µg/L)	Maximum Contaminant Level (µg/L)	Secondary Maximum Contaminant Level (µg/L)	Number exceeding Maximum Contaminant Level	Number exceeding Secondary Maximum Contaminant Level
Aluminum	20.9-23.5	54	21.3 -7,280	;	50	1	29
Antimony	15.7-17.9	2	19.6 - 20.1	5^{a}	!	2	1
Arsenic	1.7-2.7	69	1.7 - 292	20 _p	1	3	;
Barium	S	127	5 - 690	2,000	ı	0	ı
Beryllium	.5-1.2	2	.77- 1.5	1^{a}	1	-	1
Cadmium	1.5-1.7		n.d.	5	1	0	I
Chromium	5.1-5.8	Ξ	5.2 - 116	100	ł	_	1
Cobalt	2.5-3.8	14	2.8 - 51.2	1	1	1	ŀ
Copper	4 - 4.2	31	4 -1,660	$1,300^{c}$	1,000	-	
Cyanide	01	17	10.7 - 230	200^{a}	ł	2	ł
Lead	1.1-3.8	89	1.1 - 54.2	15°	1	2	ŀ
Mercury	Т.	69	-1.	2	;	0	ŀ
Nickel	4.7-6.1	36	4.8 - 376	$_{e}001$:	9	l
Selenium	2.3-3.7	32	2.3 - 17.2	50	;	0	ł
Silver	3.8-5	0	n.d.	I	100	l	n.d.
Thallium	1.1-7	71	1.1 - 6	1 a	;	7.1	1
Vanadium	2.6-3.3	41	3 - 52.7	I	i	1	1
Zinc	2.6-3.7	43	3.8 -1,090		5,000	1	0

^aProposed. ^bIn review. ^cU.S. Environmental Protection Agency action level.

Aluminum

Aluminum was detected in 54 water samples: 36 from wells completed in the Calumet aquifer, 14 from wells in the confining unit, and 4 from wells in the Silurian-Devonian aquifer. Aluminum was not detected in any of the samples from confined sand aquifers. Detected concentrations of aluminum ranged from 21.3 µg/L for wells BH28 (S-071) and C3 (S-104) to 7,280 µg/L for well I20 (S-119). Small concentrations, less than 50 μ g/L, were detected in samples from wells throughout the study area. The largest concentrations of aluminum, more than 500 µg/L, were detected in samples from several wells near and south of Lake Calumet and Wolf Lake and at well B2 (S-048) along the Lake Michigan shoreline in the central part of the study area. Aluminum concentrations ranging from 50 to 500 µg/L were detected in samples from other wells near Lake Calumet and Wolf Lake, from three wells in the central part of the study area, and from five wells in the eastern part of the study area. The SMCL for aluminum, 50 µg/L, (table 19) was exceeded in 29 water samples: 18 from wells in the Calumet aquifer, 8 from wells in the confining unit, and 3 from wells in the Silurian-Devonian aquifer.

Antimony

Antimony was detected in samples from wells B7 (S-069) and D67 (S-072), at concentrations of approximately 20 μ g/L. These wells are completed in the Calumet aquifer and are approximately 4.5 mi apart on the south side of the Grand Calumet River in the central part of the study area (fig. 2). Both wells are less than 11 ft deep and are paired with adjacent deep wells that produced samples in which antimony was not detected. The detected concentrations exceeded the proposed MCL of 5 μ g/L; however, because the laboratory quantitation limit for antimony is also larger than 5 μ g/L, it is not known if concentrations in other samples may have exceeded the proposed MCL (table 19).

Arsenic

Arsenic was detected in samples from 69 wells: 48 completed in the Calumet aquifer, 14 in the confining unit, 4 in confined sand aguifers, and 3 in the Silurian-Devonian aguifer. Detected concentrations ranged from 1.7 µg/L in water from well E6 (S-024) to 292 µg/L in water from well I15 (S-051). Concentrations in 14 of the samples were between the two quantitation limits, 1.7 and 2.7 μ g/L, reported by the laboratory. Arsenic was detected in samples from wells throughout the study area; however, twothirds of these samples were from wells located in industrial and commercial areas between the Indiana Harbor Canal and the area west of Lake Calumet. The three largest concentrations, 73, 127, and 292 µg/L, were detected in samples from wells I16 (S-059), I14 (S-035), and I15 (S-051), all of which are between Lake Calumet and the Calumet River (fig. 2). These wells are less than 15 ft deep and are completed in the Calumet aquifer in an area of fill and near waste disposal. Arsenic concentrations in these samples exceeded the proposed MCL for arsenic (table 19).

Comparison of arsenic concentrations at 14 sites where there are paired wells indicates no consistent trend with depth except at 3 sites in the eastern part of the study area where wells are screened in confined sand aquifers. Samples from wells 230-128 (S-010), 244-125 (S-052), and 105 (S-083) contained arsenic concentrations larger than 10 μ g/L. Arsenic was not detected in any samples from the shallow wells at these sites. The sample from well 230-58 (S-003), an intermediate-depth well, contained an arsenic concentration between those of the shallow well and deep well at that site. The detection of arsenic in the confined sand aquifer may indicate upward flow from the underlying shale bedrock in this area.

Barium

Barium was detected in samples from all wells except FILO6 (S-128), a 19-ft-deep well completed in the confining unit. Detected concentrations ranged from 5 μ g/L in water from well B7 (S-069) to 690 μ g/L in water from well I1 (S-032).

Samples from wells screened in the confining unit generally had larger concentrations of barium than did samples from wells in the Calumet, confined sand, or Silurian-Devonian aquifers. The median detected concentration was 105 µg/L for samples from wells completed in the confining unit, 73.3 µg/L for samples from wells in confined sand aquifers, 56.6 µg/L for samples from wells in the Calumet aquifer, and 24.1 µg/L for samples from wells in the Silurian-Devonian aquifer. The MCL for barium, 2,000 µg/L, was not exceeded in any samples (table 19); only two wells, I1 (S-032) and B2 (S-048), produced samples containing concentrations of barium larger than 500 µg/L, or 25 percent of the MCL. Well II is in an area of modified land near waste treatment and disposal south of Lake Calumet. Well B2 is in an industrial area along Lake Michigan in the central part of the study area (fig. 2).

Beryllium

Beryllium was detected in samples from wells 235-45 (S-041) and I20 (S-119). The sample from well 235-45 contained 0.77 µg/L; the sample from well I20 contained 1.5 µg/L. The detected concentrations are similar to the two quantitation limits (0.5 and 1.2 μ g/L) reported by the laboratory (table 19). Well 235-45 is screened in the Calumet aquifer at a depth of 42 feet and is in a residential area in the east-central part of the study area. Well I20 is screened in the Calumet aguifer at a depth of 15 ft in an area west of the Calumet River that may be affected by local dumping. The concentration of beryllium detected in the sample from I20 exceeded the proposed MCL of 1 µg/L (table 19). It is not known if other samples may have exceeded the proposed MCL because the quantitation limit was larger than the MCL for some of the samples.

Cadmium

Cadmium was detected in the sample from well BH14 (S-094) at a concentration of 2 μ g/L. Well BH14 is screened at a depth of 19 ft in the

Calumet aquifer and is in a residential area in the central part of the study area (fig. 2). The detected concentration of cadmium does not exceed the MCL (table 19).

Chromium

Chromium was detected in samples from 11 wells: 5 are completed in the Calumet aquifer and 6 are in the confining unit. Chromium was not detected in any samples from the confined sand or Silurian-Devonian aquifers. Detected concentrations ranged from 5.2 µg/L in water from well C25 (S-075) to 116 μg/L in water from well BH7I (S-061). The smallest detected concentration, $5.2 \mu g/L$, is within the range of the two quantitation limits (5.1 and 5.8 µg/L) reported by the laboratory (table 19). The majority of chromium detections were in samples from wells in industrial areas or near areas of fill or waste disposal; however, samples from wells BH2 (S-092) and D75 (S-116), located in residential areas, had chromium concentrations of 9.7 and 11 μ g/L. The MCL for chromium was exceeded in only one sample (table 19).

Cobalt

Cobalt was detected in 14 samples: 6 from wells completed in the Calumet aquifer, 7 from wells in the confining unit, and 1 from a well in the Silurian-Devonian aquifer. All the wells are west of the Indiana Harbor Canal. All but three of the wells are near Lake Calumet. Six of the detected concentrations were between the two quantitation limits reported by the laboratory for cobalt (2.5 and 3.8 µg/L). The largest concentration, 51.2 µg/L, was detected in the sample from well FILO2 (S-127), a 29-ft-deep well screened in the confining unit near an area of waste disposal. The smallest detected concentration was 2.8 µg/L in the samples from well D75 (S-116) located in a residential area south of the Grand Calumet River in the west-central part of the study area (fig. 2).

Copper

Copper was detected in 31 samples: 17 from wells completed in the Calumet aquifer, 13 from wells in the confining unit, and 1 from a well in the Silurian-Devonian aquifer. Copper was detected at concentrations of less than 20 µg/L in 23 of the samples. Most samples in which copper was detected were from wells in industrial areas or in areas of made or modified land including waste disposal around Lake Calumet, along the Calumet River, and west of Wolf Lake. The largest concentration, 1,660 µg/L, was detected in the sample from well I8 (S-068), a 14-ft-deep well completed in the confining unit in a filled area near industry and a wastewater-treatment facility southwest of Lake Calumet. Copper was not detected in the sample from well I9 (S-067), an 11-ft-deep well near I8. The copper concentration in the sample from well I8 exceeded the SMCL and the USEPA action level for copper (table 19). No other samples exceeded these concentrations, although samples from four wells—BH13 (S-096), BH16S (S-115), I22 (S-087), and I3 (S-086)—contained concentrations of 100, 106, 268, and 907 µg/L. Well I3 is southwest of Lake Calumet near an area of wastewater treatment. Wells BH13 and I22 are in residential areas, and well BH16S is in an area that was formerly a rail yard. Samples from wells BH12 (S-097), BH13 (S-096), and BH19 (S-095), located in a residential area south of the Grand Calumet River and west of Gary Harbor, contained concentrations of 61.4, 100, and 40.1 µg/L.

Cyanide

Cyanide was detected in 17 samples: 15 from wells completed in the Calumet aquifer, 1 from a well in the confining unit, and 1 from a well in the Silurian-Devonian aquifer. Detected concentrations ranged from 10.7 µg/L in water from well I20 (S-119) to 230 µg/L in water from well E6 (S-024). Cyanide was detected in water from wells in industrial and commercial areas or near areas of waste disposal in the central and

western parts of the study area. Concentrations in two samples, E6 (S-024) and BH33 (S-013), exceeded the proposed MCL for cyanide of 200 µg/L (table 19). These wells are south and north of Wolf Lake in areas of modified land (fig. 2). The presence of cyanide in the water samples indicates contamination.

Lead

Lead was detected in samples from 65 wells: 44 completed in the Calumet aguifer, 14 in the confining unit, and 7 in the Silurian-Devonian aquifer. Detected concentrations ranged from 1.1 µg/L in water from wells W-3 (S-080) and E5 (S-107) to 54.2 µg/L in water from well I20 (S-119). Lead was detected in water from wells throughout the study area. The largest concentrations (greater than 10 μg/L) were detected in samples from wells near areas of waste disposal around Lake Calumet; however, a relatively large concentration, 17.7 µg/L, was detected in water from well BH6 (S-054), a 21-ft-deep well completed in the Silurian-Devonian aquifer and located in a residential area. Lead concentrations in water from two wells, BH6 (S-054) and I20 (S-119), exceeded the USEPA action level of 15 μ g/L.

Comparison of detected concentrations of lead for samples from 14 sites having paired wells indicates no apparent trend in concentrations with depth. At seven sites, concentrations were largest in samples from the shallow well; at six sites, concentrations were largest in samples from the deep well; and at one site (BH18), concentrations were the same, $1.9~\mu g/L$, in samples from the shallow, intermediate, and deep wells.

Mercury

Mercury was detected in 69 samples: 46 from wells completed in the Calumet aquifer, 13 from wells in the confining unit, 3 from wells in confined sand aquifers, and 7 from wells in the Silurian-Devonian aquifer. Fifty two samples contained mercury concentrations less than 0.2 µg/L.

Detected concentrations ranged from the quantitation limit, 0.1 µg/L, in samples from wells 230-128 (S-010), 230-24 (S-017), and E6 (S-024) to 1.1 µg/L in samples from wells B2 (S-048) and I2 (S-102). Well B2 is on the Lake Michigan shoreline in an industrial area in the central part of the study area (fig. 2). Well I2 is in an area of modified land southwest of Lake Calumet. Two other samples contained concentrations of mercury larger than 0.5 µg/L: the sample from well C25 (S-075) contained 0.71 μ g/L and the sample from well I20 (S119) contained 0.59 µg/L. Both wells are near areas of waste disposal. The largest concentration detected in water from wells completed in confined sand aquifers was 0.15 µg/L for well 244-125 (S-052). The largest detected concentration in water from wells in the Silurian-Devonian aquifer was 0.24 µg/L for well FILO1 (S-123). Mercury concentrations did not exceed the MCL of 2 μ g/L (table 19).

Many of the detections of mercury in the samples were flagged as estimated by the USEPA quality-assurance audit as a result of potential contamination. The laboratory reported detections of mercury in calibration blanks at concentrations ranging from 0.1 to 1 μ g/L; therefore, the reported detections of less than 1 μ g/L of mercury may represent nondetection.

Mercury was detected in at least one sample at 11 sites having paired wells. Concentrations at three sites were largest in the sample from the shallow well, concentrations at five sites were largest in the sample from the deep well, and concentrations at one site were the same in samples from the shallow and deep wells. At two sites, the largest mercury concentration was in the sample from the wells completed at an intermediate depth.

Nickel

Nickel was detected in 36 samples: 21 from wells completed in the Calumet aquifer, 14 from wells in the confining unit, and 1 from a well in the Silurian-Devonian aquifer. Detected concentrations ranged from 4.8 µg/L in the sample from well BH18I (S-109) to 376 µg/L in

the sample from well FILO4 (S-125). Except for the lowest detection, all samples in which nickel was detected had concentrations larger than the largest quantitation limit, 6.1 µg/L, reported by the laboratory (table 19). The proposed MCL, 100 µg/L, was exceeded in samples from wells A1 (S-049), BH7I (S-061), BH13 (S-096), FILO2 (S-127), FILO4 (S-125), and FILO5 (S-126). Wells FILO2, FILO4, and FILO5 are in an area of waste disposal southwest of Lake Calumet. Well A1 is in an industrial area near Gary Harbor. Well BH13 is in a residential area south of the Grand Calumet River near Gary Harbor, and well BH7I is in a natural area along and east of the Calumet River (fig. 2).

At 10 sites having paired wells, nickel was detected in a sample from at least one well. At five of the sites, the largest concentrations were detected in water from the shallow well, whereas concentrations at three sites were larger in water from the deep wells. At two sites, nickel concentrations were detected in the sample from the well completed at an intermediate depth but not in samples from the shallow or the deep well.

Selenium

Selenium was detected in 32 samples: 22 from wells completed in the Calumet aquifer, 9 from wells in the confining unit, and 1 from a well in the Silurian-Devonian aquifer. Seventeen samples had concentrations within the range of the quantitation limits (2.3–3.7 µg/L) reported by the laboratory. Detected concentrations ranged from 2.3 µg/L in the sample from well LK13 (S-118) to 17.2 µg/L in the sample from well C1 (S-106). Selenium concentrations exceeded 10 µg/L in samples from two other wells, B2 (S-048) and A1 (S-049). These wells and well C1 are in industrial areas along the Lake Michigan shoreline in the central part of the study area (fig. 2). Selenium was detected in samples from wells in residential areas at concentrations as large as 8.6 µg/L in the sample from well BH2 (S-092). The MCL of 50 µg/L was not exceeded in any sample (table 19).

Silver

Silver was not detected in samples from any of the wells. The quantitation limits reported by the laboratory for silver are 3.8 and 5 μ g/L. In all, 46 samples were analyzed at the lower limit, and 82 were analyzed at the higher limit.

Thallium

Thallium was detected in 71 samples: 51 from wells completed in the Calumet aquifer, 14 from wells in the confining unit, and 3 each from wells in confined sand and the Silurian-Devonian aquifers. All detected concentrations are between the range of laboratory quantitation limits, 1.1 to 7 μg/L, reported for thallium. The laboratory reported having difficulties with the thallium analyses. The laboratory calibration blanks contained concentrations of thallium ranging from 1.5 to 2.5 μg/L. Of the 71 samples in which thallium was detected, 50 samples had concentrations of thallium less than 2.5 μg/L, and 55 concentrations were reported as estimated. The largest concentration of thallium that was not estimated was 2.8 μg/L.

Thallium was not detected in samples from 32 wells; the laboratory reported interference with thallium detections that resulted in unreliable data for an additional 25 samples. As a result of the quantitation limits, the proposed MCL for thallium, 1 μ g/L, was exceeded in all samples in which thallium was detected (table 19). The reported detections could indicate widespread occurrence of thallium in the study area; however, because of the analytical problems, these concentrations are probably not representative of ground-water quality.

Vanadium

Vanadium was detected in samples from 41 wells: 31 from wells completed in the Calumet aquifer, 9 from wells in the confining unit, and 1 from a well in the Silurian-Devonian aquifer. The laboratory reported two quantitation limits

for vanadium, 2.6 and 3.3 μ g/L. Nine of the detected concentration values were between these limits. The detected concentrations ranged from 3 μ g/L in the samples from wells BH13 (S-096) and BH27 (S-047) to 52.7 μ g/L in the sample from well BH18S (S-091). Most samples in which vanadium was detected were from wells in the western part of the study area; however, concentrations less than 10 μ g/L were detected in water from wells at scattered locations in the central and eastern parts of the study area. The largest concentrations, greater than 10 μ g/L, were detected in samples from wells in or near industrial areas, areas of waste disposal, or areas of made or modified land.

Zinc

Zinc was detected in 43 samples: 20 from wells completed in the Calumet aguifer, 17 from wells in the confining unit, 2 from wells in confined sand aquifers, and 4 from wells in the Silurian-Devonian aquifer. Detected concentrations ranged from 3.8 µg/L in the sample from well I15 (S-051) to 1,090 μ g/L in the sample from well 25 (S-027). The relatively large concentrations, 411 to 1,090 µg/L, in samples from wells 25 (S-027), 230-24 (S-017), D-5A (S-020), and 24 (S-026) in the eastern part of the study area do not indicate concentrations of zinc in the aquifer because the wells are constructed of galvanized casing that is contributing zinc to the water sample. Disregarding the wells that have galvanized casing, the largest concentration of zinc was detected in the sample from well I3 (S-086), a 13-ft-deep well completed in the confining unit and located in an area of modified land near waste disposal south of Lake Calumet (fig. 2). Concentrations of zinc larger than 100 µg/L also were detected in samples from wells I9 (S-067), I20 (S-119), and I22 (S-087). Well I9 is in an area of made land and well I20 is near waste disposal, but well I22 is in a residential area west of Wolf Lake. The largest concentration in samples from wells in confined sand aguifers was 14.1 µg/L for well 244-125 (S052). Zinc was not detected in the sample

from the shallow well at this site. The largest concentration in samples from wells in the Silurian-Devonian aquifer was $58.8 \,\mu\text{g/L}$ for well FILO1 (S-123), located in an area of waste disposal. The detected concentrations of zinc do not exceed the SMCL (table 19).

Volatile Organic Compounds

Water samples were analyzed for the presence of 33 VOC's on the USEPA's target compound list (table 20, appendix 3). Additionally, several tentatively identified VOC's that are not on the target compound list were detected during the laboratory analysis (table 21, appendix 3). The quantitation limit was 10 µg/L for most samples; however, samples from wells D20 (S-022), A3 (S-044), and I2 (S-102) were diluted by the laboratory and have quantitation limits ranging from 33 to 120 µg/L. Samples from wells I3 (S-086), I20 (S-119) and WS5 (S-1240) were diluted and re-analyzed after the initial analyses because concentrations of one or more compounds in the sample exceeded the laboratory calibration range for that specific compound. Results reported for these analyses are concentrations of VOC's detected within the calibration range on the initial analysis and concentrations determined from analysis of the diluted sample for the compounds that exceeded the calibration range on the initial sample.

Results of the analyses for VOC's are summarized in table 22. Target VOC's were detected in water from 20 of the 128 wells sampled. A total of 14 target VOC's was detected. The number of VOC's detected in each sample ranges from one compound in water from 11 wells to 5 compounds in water from 2 wells. Target VOC's were detected in water from 14 wells completed in the Calumet aquifer, 5 wells in the confining unit, and 1 well in the Silurian-Devonian aquifer. Of the 20 wells having water in which VOC's were detected, 18 are in or near industrial areas or in areas of made or modified land or waste disposal. The other two

wells are in residential areas. Target VOC's were detected near industrial and waste-disposal sites around Lake Calumet and in industrial areas along the Calumet River, between Lake George and the Indiana Harbor Canal, near Gary Harbor, and at two locations south of the Grand Calumet River in the central part of the study area (fig. 9).

The detected VOC's are primarily solvents and degreasers that are used in a variety of industrial and manufacturing processes (Lucius and others, 1990). Many of the detected compounds, including benzene, toluene, and xylenes, are associated with petroleum refining and coal coking (Burdick and Leffler, 1983). Benzene, toluene, and xylenes were among the VOC's most frequently detected during this study and were the most frequently detected VOC's reported by Fenelon and Watson (1993). Because these compounds do not occur naturally, their presence in the samples indicates contamination of ground water.

Water from wells, BH21 (S-002), D40 (S-006), D10 (S-019), D20 (S-022), D21 (S-023), and C19 (S-074)—all near areas where petroleum is refined or stored—have measurable concentrations of VOC's. Benzene was the most frequently detected VOC in water from these wells; concentrations ranged from 8 µg/L in water from well BH21 to 1800 µg/L in water from well D20. Concentrations of benzene in water from these wells exceeded the MCL established by USEPA for this compound (table 22). Acetone and xylenes were detected in water from two of these wells. Water from well C19, near a petroleum storage facility, contained five detected target VOC's: acetone, benzene, toluene, ethylbenzene, and xylene. All the target VOC's detected in water from these wells are components of gasoline and are associated with petroleum refining (Burdick and Leffler, 1983).

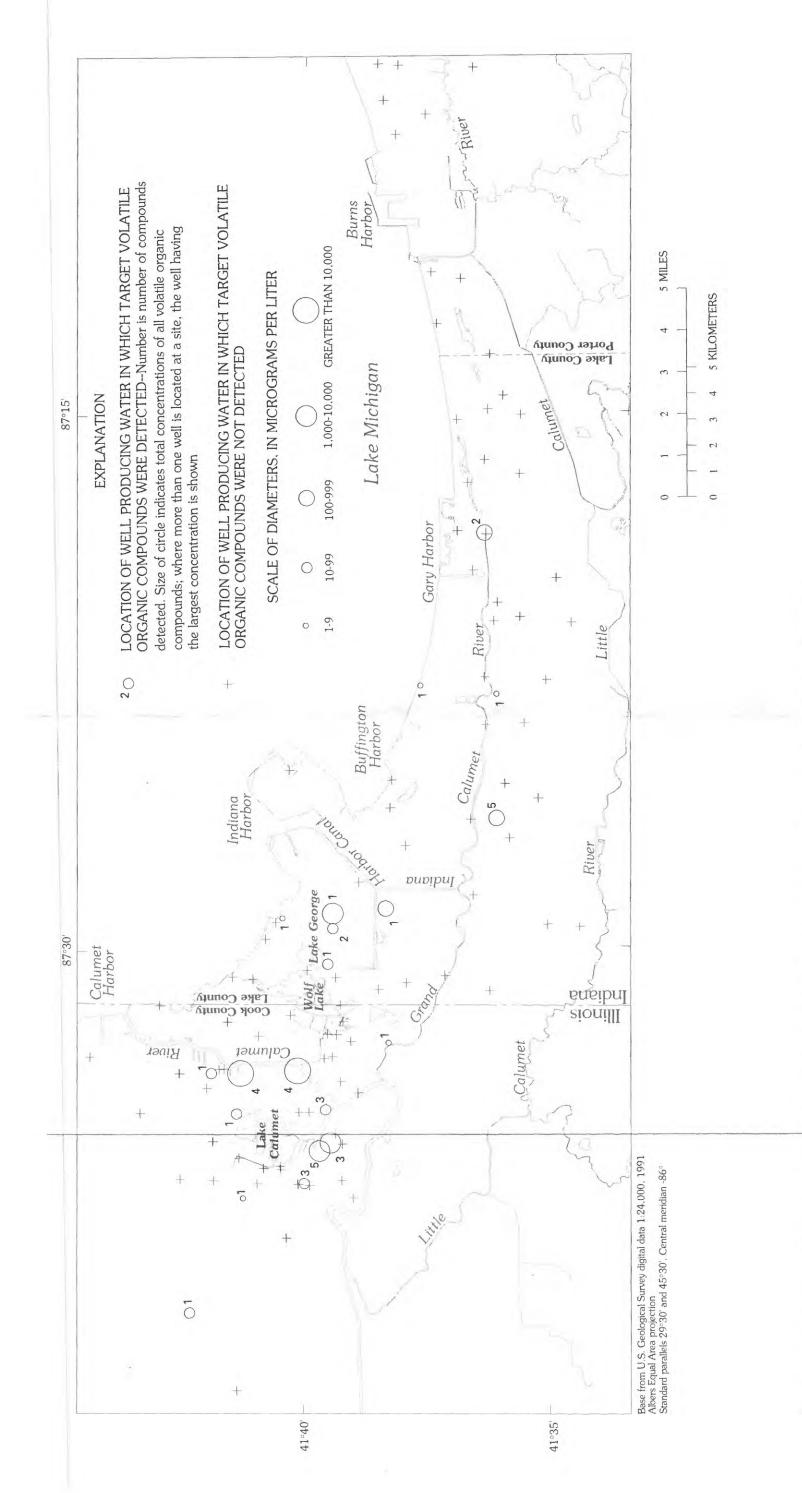

The laboratory reported a quantitation limit of $120 \mu g/L$ for the sample from well D20 (S-022) as a result of sample dilution; therefore, it is not known if other VOC's are present in water from this well at concentrations less than the quantitation

Table 22. Maximum Contaminant Levels for volatile organic compounds and summary of detections in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993

[CAS, Chemical Abstract Service; USEPA, U.S. Environmental Protection Agency; $\mu g/L$, microgram per liter; MCL, Maximum Contaminant Level; n.r., no regulation; n.a., not applicable. Source: U.S. Environmental Protection Agency, 1992]

Compound name	CAS registry number	USEPA MCL (μg/L)	Number of wells with compound	Number of wells exceeding MCL
Target compounds:	· ···			
Acetone	67-64-1	n.r.	4	n.a.
Benzene	71-43-2	5	11	11
Chloroform	67-66-3	100 ^a	1	0
1,1-Dichloroethylene	75-35-4	7	1	1
1,1-Dichloroethane	75-34-3	n.r.	1	n.a.
1,2-Dichloroethene	540-59-0	n.r.	3	n.a.
Ethylbenzene	100-41-4	700	3	0
2-Hexanone	591-78-6	n.r.	1	n.a.
Methylisobutyl ketone	108-10-1	n.r.	1	n.a.
Styrene	100-42-5	100	1	0
1,1,2,2-Tetrachloroethane	79-34-5	n.r.	1	n.a.
Toluene	108-88-3	1,000	4	0
Vinyl chloride	75-01-4	2	2	2
Xylenes	1330-20-7	10,000	7	0
Tentatively identified compounds:				
Unknown aliphatic hydrocarbon	n.a.	n.r.	8	n.a.
Unknown aromatic hydrocarbon	n.a.	n.r.	2	n.a.
Unknown	n.a.	n.r.	7	n.a.

^aListed for regulation.

anic compounds in ground water in the Calumet Region, Indiana and Illinois, June 1993. Figure 9. Distribution of target volatile or

44 Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

limit. Fenelon and Watson (1993) reported detections of benzene in water from well D20 collected during 1987 and 1988. They also reported detections of ethylbenzene, toluene, and xylenes in water from this well. The concentration of benzene reported for the sample collected in 1987 was similar to that detected for this study; however, the concentration reported for the sample collected during 1988 was much smaller (Fenelon and Watson, 1993).

A total of nine different VOC's was detected in water from five wells—I14 (S-035), B7 (S-069), BH32 (S-110), I20 (S-119), and FILO4 (S-125) all near areas of waste disposal. The VOC's detected in water from these wells are acetone, benzene, chloroform, 1,1-dichloroethylene, 1,2-dichloroethene, 2-hexanone, methylisobutyl ketone, toluene, and vinyl chloride. Water from two of these wells contains one detected VOC, water from two wells contains three detected VOC's, and water from one well contains four detected VOC's. Acetone, benzene, and toluene were each detected in water from at least one well but were detected at generally smaller concentrations than those in water from wells near petroleum industry. Concentrations of benzene in water from wells near areas of waste disposal exceeded the MCL for this compound (table 22). The presence of these compounds in ground water indicates that dissolved waste material is entering the ground water in these areas.

Vinyl chloride was detected in water from wells I20 (S-119) and FILO4 (S-125). The detected concentrations exceeded the USEPA's MCL for vinyl chloride (table 22). The concentration of vinyl chloride in water from well I20 is 10,000 µg/L, or 5,000 times the MCL. A large concentration of 1,2-dichloroethene, 42,000 µg/L, also was detected in water from well I20. Roadcap and Kelly (1994, p. 40) reported similar concentrations of these compounds in water from well I20. This well is next to an entrance road to a landfill. The quality of water from well I20 indicates contamination of the ground water that may have resulted from spillage or leakage from vehicles in route to the landfill or from unauthorized dumping or both.

Wells A3 (S-044), B2 (S-048), and WS5 (S-124), all near steel industry, produced water containing target VOC's. The laboratory diluted the sample from well A3 and reported a 33-µg/L quantitation limit for this sample. Benzene was detected in water from wells A3 and WS5 in concentrations of 530 µg/L and 9,900 µg/L. The concentration of benzene detected in water from well WS5 was the largest concentration of benzene detected during this study. The concentrations in water from both wells exceeded the MCL for benzene (table 22). The concentration of xylenes, $2 \mu g/L$, detected in water from well B2, was less than the quantitation limit and was estimated. Xylenes also were detected in water from well WS5, in addition to benzene, ethlybenzene, and toluene. These compounds are associated with coal coking and are components of coal tar (Burdick and Leffler, 1983). Water from well A3 contained an estimated concentration of 7 μg/L of 1,1-dichloroethane. This compound is used in various industrial processes, including ore flotation (Burdick and Leffler, 1983, p. 267).

Water from five wells in areas of modified land contained a total of seven target VOC's. The wells are BH31 (S-036), B2 (S-048), I3 (S-086), I2 (S-102), and WS9 (S-120). Relatively small concentrations of VOC's were detected in water from some but not all wells near areas of slag disposal. Different compounds were detected in water from different wells, and no single compound was detected in water from all the wells. The compounds detected include acetone, 1,2-dichloroethene, and xylenes. Relatively large concentrations of benzene, toluene, and xylenes were detected in water from wells I2 and I3. In addition, water from well I3 contained estimated concentrations of ethlybenzene and styrene. Wells I2 and I3 are in an area of miscellaneous fill containing sand, slag, construction debris, and other materials. The wells also are adjacent to an interstate highway and near areas of waste disposal. These contaminants may originate in the areas of waste disposal, within the fill material itself, or may result from material spills along the highway.

Two wells located in residential areas, IP (S-058) and BH1D (S-089), produced water that contained one target VOC. Water from BH1D contained 37 µg/L of acetone, and water from IP contains an estimated 3 µg/L of xylenes. In addition to being in residential areas, these wells are completed much deeper than the other wells in which target VOC's were detected. Well IP is the only well in the Silurian-Devonian aguifer that produced water in which target VOC's were detected. Large concentrations of acetone and xylenes have been reported to increase the hydraulic conductivity of clay liners used to contain landfill leachate (Anderson and Brown, 1981; Brown and others, 1983, 1986). If the detected concentrations of VOC's in water from these wells are representative of the ground water at these locations, then the potential for VOC's to move into relatively deep ground water is demonstrated.

Several tentatively identified VOC's were detected in the samples during analysis for the target compounds. The laboratory reported some of the tentatively identified VOC's by compound name and others as "unknown"; all concentrations reported by the laboratory are considered to be estimates. In this report, the tentatively identified VOC's are grouped into three categories: aliphatic and alicylic hydrocarbon compounds, aromatic hydrocarbon compounds, and unknown compounds. Aliphatic compounds are open-chain compounds and alicyclic compounds contain one or several rings (Schwarzenbach and others, 1993, p. 32). Aromatic compounds are benzene and compounds that resemble benzene in their chemical behavior (Morrison and Boyd, 1980, p. 318). Concentrations reported are totals of all tentatively identified compounds in the samples for each category.

Tentatively identified VOC's were detected in water from 13 wells (table 21, appendix 3). Seven of the wells produced water in which target VOC's also were detected; six wells produced water in which target VOC's were not detected. The number of tentatively identified VOC's detected in samples from these wells ranged from 1 compound in water from 9 wells to 10 compounds in water from 2 wells. Tentatively identified VOC's were detected

in water from nine wells completed in the Calumet aquifer, three wells in the confining unit, and one well in the Silurian-Devonian aquifer. Eleven of the 13 wells are in industrial areas or in areas of waste disposal or modified land. Two of the wells are in residential areas.

The tentatively identified VOC's are primarily aliphatic hydrocarbon compounds, which were detected in water from 8 of the 13 wells. Tentatively identified compounds reported as unknown were detected in water from seven wells. Aromatic hydrocarbon compounds were detected in water from two wells. The tentatively identified VOC's detected during this study are primarily solvents (Lucius and others, 1990). Several detected compounds are components of petroleum and coal tar. Tentatively identified VOC's reported by the laboratory include cyclohexane, cyclopentane, and propylbenzene. The presence of these compounds indicates ground-water contamination.

Of the 13 wells that produced water containing tentatively identified VOC's, 5 wells—C19 (S-074), D10 (S-019), D20 (S-022), D21 (S-023), and D40 (S-006)—are near areas where petroleum is refined or stored. Water from these wells generally contained larger concentrations of tentatively identified VOC's than water from the other wells in which tentatively identified VOC's were detected. Water from three of these wells had the largest concentrations of tentatively identified VOC's detected during this study. The average concentration of tentatively identified VOC's in water from these wells is about 500 $\mu g/L$. The number of tentatively identified VOC's in water from these wells ranges from 3 to 10 compounds.

Five wells that produced water in which tentatively identified VOC's were detected are near areas of waste disposal. The wells are C18 (S-076), FILO4 (S-125), FILO5 (S-126), I10 (S-064), and I15 (S-051). Concentrations of tentatively identified VOC's in water from these wells ranged from 6 to 186 μ g/L. The presence of tentatively identified VOC's in water from well FILO5, a bedrock well, indicates that VOC's have moved relatively

deep in the ground-water-flow system. VOC's were not detected in water from a shallow well at this site, so it is unlikely that VOC's have migrated vertically down the well bore.

Of the three other wells that produced water containing tentatively identified VOC's, one well, WS5 (S124), is near steel industry and two wells, BH5D (S-108) and BH12 (S-097), are in residential areas. Water from the well near steel industry contained one tentatively identified VOC at a concentration of $26 \mu g/L$. Water from each of the two wells in residential areas contained one tentatively identified VOC at a relatively small concentration (5 and $14 \mu g/L$).

Semivolatile Organic Compounds

Water samples were analyzed for the presence of 64 SVOC's on the USEPA's target compound list (table 23, appendix 3). The laboratory also reported the presence of a number of tentatively identified SVOC's and molecular sulfur in some of the samples (table 24, appendix 3). The sample quantitation limit was 10 µg/L for 56 of the target compounds and 25 µg/L for 8 of the target compounds. One sample, S-019 (D10), was diluted by the laboratory and has quantitation limits of 100 and 250 µg/L. Samples from wells I3 (S-086), I2 (S-102), and WS5 (S-124) were diluted and re-analyzed after the initial analyses because concentrations of one or more compounds in the sample exceeded the laboratory calibration range for that specific compound. Results reported for these analyses are concentrations of SVOC's detected within the calibration range on the initial analysis and concentrations determined from analysis of the diluted sample for the compounds that exceeded the calibration range on the initial sample.

Target SVOC's were detected in water from 56 of the 128 wells that were sampled. A total of 23 target SVOC's was detected (table 25). The number of SVOC's detected in each of the 56 samples ranged from 1 compound in water from 41 wells to 14 compounds in water from 1 well.

No MCL's have been established for 21 of the 23 target SVOC's detected. The MCL for benzo[b]fluoranthene was exceeded in one sample.

Di-*n*-butylphthalate and bis(2-ethylhexyl) phthalate were the most frequently detected compounds reported by the laboratory; however, these compounds also were detected at similar concentrations in laboratory and field-blank samples. The quality-assurance review determined that some reported detections of these compounds should be considered as not detected, although not all of the detections were qualified in this manner. The reported detections of these two compounds that were not qualified by the review are listed in the tables but are not included in further discussion because concentrations of these compounds are probably not representative of ground-water quality. If the samples that contain only these two compounds are not included, then SVOC's were detected in water from 23 wells.

SVOC's were detected in samples from 16 wells completed in the Calumet aquifer, 6 wells in the confining unit, and 1 well in the Silurian-Devonian aquifer (fig. 10). SVOC's were detected in water from 9 wells near industrial facilities, 8 wells in areas of modified land or near waste-disposal sites, 5 wells in residential areas, and 1 well in a natural area.

The detected SVOC's comprise a variety of industrial compounds including disinfectants, insecticides, deodorants, and plasticizers (Lucius and others, 1990). Many of the compounds are components or byproducts of coal tar and petroleum processing or combustion. Phenol, phenanthrene, and naphthalene are among the most frequently detected compounds and, along with orthocresol and paracresol, were detected in relatively large concentrations compared to the other SVOC's.

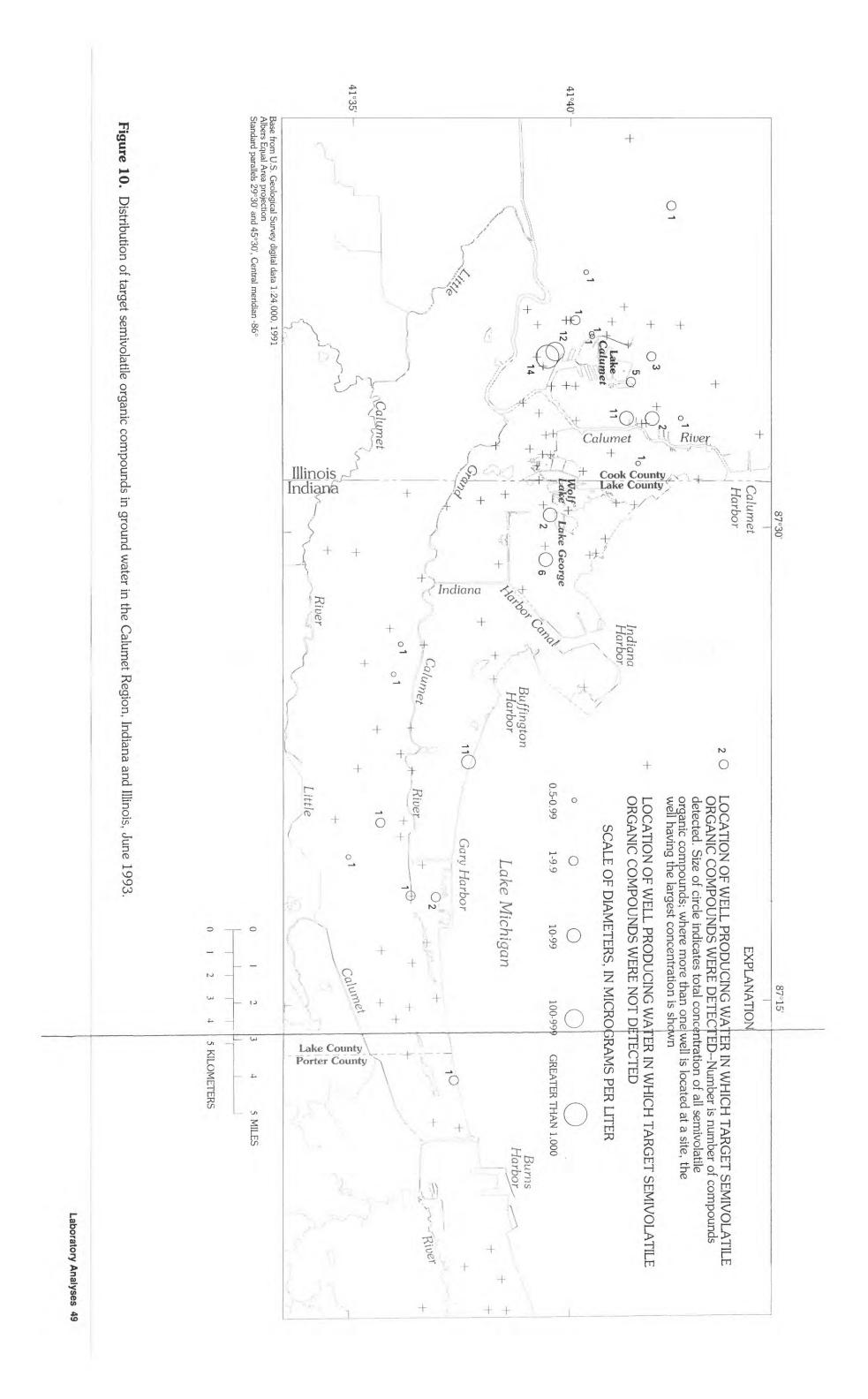

Nine wells near industrial facilities and producing water in which SVOC's were detected are D20 (S-022), B2 (S-048), A1 (S-049), A4 (S-050), I10 (S-064), C19 (S-074), WS9 (S-120), WS7 (S-121), and WS5 (S-124). Total concentrations of SVOC's in water from these wells ranged from

Table 25. Maximum Contaminant Levels for semivolatile organic compounds and summary of detections in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993

[CAS, Chemical Abstract Service; USEPA, U.S. Environmental Protection Agency; µg/L, microgram per liter; MCL, Maximum Contaminant Level; n.r., no regulation; n.a., not applicable. Source: U.S. Environmental Protection Agency, 1992]

Compound name	CAS registry number	USEPA MCL (µg/L)	Number of wells with compound	Number of wells exceeding MCL
Target compounds				
Phenol	108-95-2	n.r.	8	n.a.
1,4-Dichlorobenzene	106-46-7	75	1	0
Orthocresol (2-methylphenol)	95-48-7	n.r.	2	n.a.
Paracresol (4-methylphenol)	106-44-5	n.r.	4	n.a.
2,4-Dimethylphenol	105-67-9	n.r.	4	n.a.
Naphthalene	91-20-3	n.r.	7	n.a.
2-Methylnaphthalene	91-57-6	n.r.	4	n.a.
Dimethylphthalate	131-11-3	n.r.	2	n.a.
Acenaphthylene	208-96-8	n.r.	4	n.a.
2,6-Dinitrotoluene	606-20-2	n.r.	1	n.a.
Acenaphthene	83-32-9	n.r.	3	n.a.
Dibenzofuran	132-64-9	n.r.	3	n.a.
Fluorene	86-73-7	n.r.	6	n.a.
Phenanthrene	85-01-8	n.r.	8	n.a.
Carbazole	86-74-8	n.r.	3	n.a.
Di-n-butylphthalate	84-74-2	n.r.	15	n.a.
Fluoranthene	206-44-0	n.r.	4	n.a.
Pyrene	129-00-0	n.r.	4	n.ą.
bis(2-ethylhexyl)phthalate	117-81-7	n.r.	28	n.a.
Diethylphthalate	84-66-2	n.r.	3	n.a.
Anthracene	120-12-7	n.r.	2	n.a.
Di-n-octylphthalate	117-84-0	n.r.	4	n.a.
Benzo[b]fluoranthene	205-99-2	.2ª	1	1
Tentatively identified compounds				
Unknown aliphatic hydrocarbon	n.a.	n.r.	23	n.a.
Unknown aromatic hydrocarbon	n.a.	n.r.	19	n.a.
Unknown	n.a.	n.r.	61	n.a.
Molecular sulfur	10544-50-0	n.r.	15	n.a.

^aProposed.

0.5 µg/L in water from wells I10 and WS7 to 99.8 µg/L in water from well WS5. The number of SVOC's detected in water from each well ranged from one compound in water from wells A1, A4, I10, C19, and WS7 to 11 compounds in water from wells B2 and WS5.

Naphthalene was detected in water from five wells near industrial facilities at concentrations ranging from $0.5~\mu g/L$ in water from well I10 to $12~\mu g/L$ in water from well D20. Phenol, flourene, and phenanthrene were detected in water from three wells near industrial facilities. Water from well WS5 contained 73 $\mu g/L$, and water from well D20 contained 33 $\mu g/L$ of phenol. Other SVOC's detected in water from at least two wells near industrial facilities were dimethylphthalate, 2,4-dimethylphenol, acenapthene, dibenzofuran, fluoranthene, and pyrene. The presence of these compounds indicates contamination of ground water.

Eight wells in areas of modified land or near waste disposal sites produced water in which target SVOC's were detected: I13 (S-033), BH31 (S-036), C18 (S-076), I3 (S-086), I2 (S-102), BH32 (S-110), FILO1 (S-123), and FILO2 (S-127). Total concentrations of SVOC's in samples from these wells ranged from 0.6 μ g/L in water from well FILO1 to 5,234 μ g/L in water from well I2. The number of SVOC's detected in each sample ranged from 1 compound in water from wells C18, FILO1, and FILO2 to 14 compounds in water from well I2.

Phenol and phenanthrene were the most frequently detected SVOC's in water from wells in areas of made or modified land or near waste disposal. Concentrations of phenol ranged from 0.8 μ g/L in water from well C18 to 1,600 μ g/L in water from well I2. Detected concentrations of phenanthrene ranged from 0.8 μ g/L in water from well I3 to 14 μ g/L in water from well I2. Other SVOC's that were detected in water from three of these wells were paracresol, di-*n*-octylphthalate, 2-methylnaphthalene, and acenapthylene.

Water from wells I3 and I2, near the southwestern edge of Lake Calumet and along an interstate highway (fig. 2), had very large total concentrations of SVOC's—306.2 and 5,234 μ g/L. Roadcap and Kelly (1994, p. 41) reported detecting similar compounds and concentrations in water samples from these wells. They attributed groundwater quality at these wells to various potential contaminant sources including road salting, petroleum, and steel making.

One target SVOC was detected in each sample from wells BH23 (S-081), BH1D (S-089), A20 (S-079), BH25 (S-093), and BH13 (S-096) (table 23, appendix 3). These wells are in residential or commercial areas. The reported concentrations were less than the laboratory quantitation limit and ranged from 0.6 to 4 µg/L. Only two target SVOC's were reported at concentrations larger than 1 µg/L in water from these wells. Water from well BH13 contained 4 µg/L of 1,4-dichlorobenzene, a common insecticide (Budavari, 1989, p. 482). Water from well BH1D contained 2 µg/L of phenol. Well BH1D is 90 ft deep and completed in the confining unit. VOC's also were detected in water from this well; however, no organic compounds were detected in water from a 15-ft-deep well at this site. The presence of organic compounds in the deep well may result from horizontal flow of ground water through the base of the moraine rather than downward flow through the confining unit.

A concentration of 1 μg/L of di-*n*-octylphthalate was reported for water from well 232 (S-082), located in a natural area along Lake Michigan. Well 232 is screened at a depth of 43 ft in the Calumet aquifer. The detected compound, di-*n*-octylphthalate, is a plasticizer and is documented to be distributed widely in the environment (Callahan and others, 1979, p. 94-1a). The presence of this compound in water from well 232 may indicate the persistence of some organic compounds and their capability to move in ground water. On the other hand, di-*n*-octylphthalate is closely related to bis(2-ethylhexyl)phthalate (Callahan and others, 1979, p. 94–3), a laboratory contaminant commonly detected during this study.

More than 50 tentatively identified SVOC's were detected in the samples during analysis for the target compounds (table 24, appendix 3). The laboratory reported some of the tentatively identified SVOC's by compound name and others as "unknown"; all concentrations reported by the laboratory are considered estimates. The tentatively identified SVOC's are grouped into three categories: aliphatic hydrocarbon compounds, aromatic hydrocarbon compounds, and unknown compounds. Concentrations reported are totals of all tentatively identified compounds in the samples for each category. The tentatively identified SVOC's that were detected are primarily classified as unknown compounds, which were detected in water from 61 wells. Aliphatic hydrocarbon compounds were detected in water from 23 wells, and aromatic hydrocarbon compounds were detected in water from 19 wells.

Tentatively identified SVOC's were detected in water from 73 wells (table 24, appendix 3). Tentatively identified SVOC's were detected in water from 17 of the 23 wells producing water in which target SVOC's were detected. More than one-half of the samples in which tentatively identified SVOC's were detected contained only one or two compounds; water from 25 wells contained one tentatively identified SVOC, and water from 12 wells contained two tentatively identified SVOC's. Water from five wells, D10 (S-019), A1 (S-049), C19 (S-074), I2 (S-102), and FILO4 (S-125), contained 20 tentatively identified SVOC's. Tentatively identified SVOC's were detected in water from 48 wells completed in the Calumet aguifer, 16 wells in the confining unit, 2 wells in confined sand aquifers, and 7 wells in the Silurian-Devonian aquifer. Thirty-four of the wells are in residential or commercial areas, 17 are in industrial areas, 17 are in areas of waste disposal or made or modified land, and 5 wells are in natural areas.

Water from 17 wells near industrial facilities contained concentrations of tentatively identified SVOC's ranging from 2 to 22,864 µg/L. The average concentration in water from these wells was 1,790 µg/L. The number of tentatively

identified SVOC's in each sample ranged from one compound in water from D11 (S-018), D21 (S-023), I21 (S-060), and I10 (S-064) to 20 compounds in water from D10 (S-019), A1 (S-049), and C19 (S-074). Unknown compounds were detected in water from 16 of the wells in this group. Water from seven wells contained aromatic compounds, and water from four wells contained aliphatic compounds. Six of the wells near industrial facilities and producing water in which tentatively identified SVOC's were detected also produced water containing target SVOC's.

Fourteen wells near industry produced water containing more than 10 μ g/L of tentatively identified SVOC's. Seven wells produced water in which concentrations of these compounds exceeded 100 μ g/L. Three wells—D10 (S-019), C19 (S-074), and WS5 (S-124)—produced water containing more than 1,000 mg/L of tentatively identified SVOC's. Wells D10 and C19 are near petroleum industry and produced water containing 4,680 and 1,297 μ g/L of unknown and aromatic compounds. Water from well WS5, near steel industry, contained 22,864 μ g/L of unknown and aliphatic compounds.

Seventeen wells in areas of made or modified land or near waste disposal produced water in which tentatively identified SVOC's were detected. Concentrations of these compounds ranged from 2 to 16,543 µg/L and averaged 2,030 µg/L. The number of tentatively identified SVOC's in each sample ranged from one compound in water from I1 (S-032) and BH18S (S-091) to 20 compounds in water from wells I2 (S-102) and FILO4 (S-125). Unknown compounds were detected in water from 16 of the wells in this group. Water from six wells contained aromatic compounds, and water from five wells contained aliphatic compounds. Six of the wells in this group also produced water containing target SVOC's.

Water from 13 wells in areas of made or modified land or near waste disposal contains more than 10 µg/L of tentatively identified SVOC's. Seven wells produced water in which concentrations of these compounds exceeded 100 µg/L. Concentrations of tentatively identified SVOC's in water from wells BH32 (S-110), FILO4 (S-125),

and FILO2 (S-127) were 3,545, 16,543, and 13,035 μ g/L. Wells FILO2 and FILO4 are near a waste-disposal site southwest of Lake Calumet (fig. 2) and produced water containing unknown and aromatic compounds. Well BH32 is near a waste-disposal site on the north side of Lake Calumet and produced water containing unknown, aliphatic, and aromatic compounds.

Tentatively identified SVOC's were detected in water from 34 wells in residential or commercial areas. Concentrations ranged from 2 μ g/L in water from nine wells to 911 μ g/L in water from BH23 (S-081). The average concentration in water from these wells was about 40 μ g/L. Although tentatively identified SVOC's were detected in water from more wells in residential or commercial areas than wells in industrial areas or in areas of waste disposal, the number of compounds detected and the concentrations are generally small in residential or commercial areas. Of the 34 wells, 18 produced water in which only one compound was detected, and 9 produced water in which only two compounds were detected.

Well BH23 produced water containing the largest concentration and number of tentatively identified SVOC's detected at any well in a residential or commercial area; however, none of these compounds was detected in a duplicate sample from this well. The detection of these compounds was not qualified during the USEPA review, and the cause for the discrepancy between the analyses is not clear. Visual inspection of cuttings and water samples during drilling and development of BH23 indicated the presence of contaminants. The lack of reproducible results and the tentative nature of the identification indicate that the reported detections may not be representative of water quality at this site.

Concentrations of tentatively identified SVOC's detected in water from five wells in natural areas ranged from 2 to 81 μ g/L. The average concentration in water from these wells was 24 μ g/L. The number of tentatively identified SVOC's

detected in each sample ranged from 1 compound in water from WP1 (S-007) and D-5A (S-020) to 11 compounds in water from W-3 (S-080).

Only two wells in natural areas produced water containing more than 10 μ g/L of tentatively identified SVOC's: BH7D produced water containing 32 μ g/L, and W-3 produced water containing 81 μ g/L. BH7D (S-066) is a bedrock well and is the deepest of three wells at this site. No SVOC's were detected in water from BH7S(S-065), screened in the Calumet aquifer, or BH7I (S-061), screened in the confining unit. The presence of tentatively identified SVOC's in water from the bedrock and the absence of these compounds in water from the shallow geohydrologic units at this site indicates that the SVOC's may have moved into this area from an offsite source.

Well W3 is a shallow well (10 ft deep) screened in the Calumet aquifer in a natural area of dunes and wetlands in the eastern part of the study area. No other organic compounds were detected in water from this well. Unauthorized waste disposal probably has not occurred at this site. If the reported detections of tentatively identified SVOC's are not the result of laboratory error or sample contamination, then they must represent water contaminated by an offsite source.

Comparison of concentrations of tentatively identified SVOC's in water from paired wells at 15 sites indicates that these compounds are detected in more abundance in shallow ground water than in deep ground water. Tentatively identified SVOC's were detected in larger concentrations in water from shallow wells at 10 sites. Deep wells at three sites produced water containing larger concentrations of tentatively identified SVOC's compared to water from shallow wells. At two sites, the largest concentrations were detected in water from an intermediate-depth well.

Along with the tentatively identified SVOC's, the laboratory reported detections of molecular sulfur. The presence of molecular (or elemental) sulfur in ground water is questionable. Although

sulfur is present naturally in earth materials, elemental sulfur usually is found in sediments that are several hundred feet below land surface, and its presence may be related to bacterial reduction (Sienko and Plane, 1974, p. 634). More commonly, sulfur forms chemical bonds to produce sulfates and sulfides. Elemental sulfur is not soluble in water (Hammond, 1993, p. 4–28). The detection of molecular sulfur in ground-water samples probably results from the presence of sulfur in organic compounds. Sulfur is a component of coal and petroleum crude and is used in making various industrial compounds and products, including sulfuric acid, fungicides, vulcanized natural rubber, and paper (Hammond, 1993, p. 4-28).

Molecular sulfur was detected in water from 15 wells. Detected concentrations ranged from 2 μ g/L in water from three wells to 550 μ g/L in water from well I10 (S-064). Eight wells produced water containing less than 10 μ g/L of molecular sulfur, and three wells produced water containing more than 100 μ g/L of molecular sulfur. Molecular sulfur was detected in water from 12 wells completed in the Calumet aquifer, 2 wells in the confining unit, and 1 well in the Silurian-Devonian aquifer. Seven wells are near industry, three are near areas of waste disposal, three are located in residential and commercial areas, and two are in natural areas.

Concentrations of molecular sulfur in water from seven wells near industry ranged from 2 to 550 µg/L. The three largest concentrations of molecular sulfur were detected in water from wells near industrial facilities. Concentrations in water from wells near waste-disposal sites ranged from 12 to 43 µg/L, and concentrations in water from wells in residential and commercial areas ranged from 2 to 9 µg/L. Two wells in natural areas each produced water containing 3 µg/L of molecular sulfur. Both of these wells are in wetlands in the eastern part of the study area. It is not known if the presence of molecular sulfur in water from these wells could be related to natural reduction of sulfur compounds in the wetlands. Tentatively identified SVOC's also were detected in water from one of these wells.

Compounds Containing Pesticides or Polychlorinated Biphenyls

Water samples were analyzed for the presence of 21 pesticide compounds and 7 aroclor compounds (table 26, appendix 3). The pesticide compounds are either pesticides or degradation products of pesticides. Aroclor compounds are technical mixtures of polychlorinated biphenyls that differ from each other primarily in their chlorine content (Lucius and others, 1990, p. 118). The laboratory quantitation limit was varied among compounds but remained the same for each compound throughout the study with one exception: the sample from well D10 (S-019) was diluted by the laboratory and has quantitation limits that are twice those of the other samples.

A total of 18 pesticide compounds was detected in water from 29 wells. The number of detected compounds in each sample ranged from 1 compound in water from 17 wells to 14 compounds in water from well I2 (S-102). The total detected concentration of pesticide compounds in water from a single well ranged from 0.004 to 1.78 μ g/L. Nearly all the concentrations of pesticide compounds were qualified as estimated by the USEPA quality-assurance audit.

Pesticides were detected in water from 15 wells completed in the Calumet aquifer, 10 wells in the confining unit, and 4 wells in the Silurian-Devonian aquifer. Eight of these wells are in industrial areas, 13 wells are near areas of waste disposal or in areas of made or modified land, 5 wells are in residential areas, and 3 wells are in a natural area that may be affected by waste disposal. Pesticide compounds were detected in water from wells near industrial and waste-disposal facilities around Lake Calumet and in industrial areas along the Grand Calumet River and Indiana Harbor Canal. Pesticides were not detected in water from any wells in the eastern part of the study area (fig. 11).

The pesticide compounds most frequently detected during this study were endrin aldehyde, which was detected in water from 14 wells, and p,p'-DDT, which was detected in water from

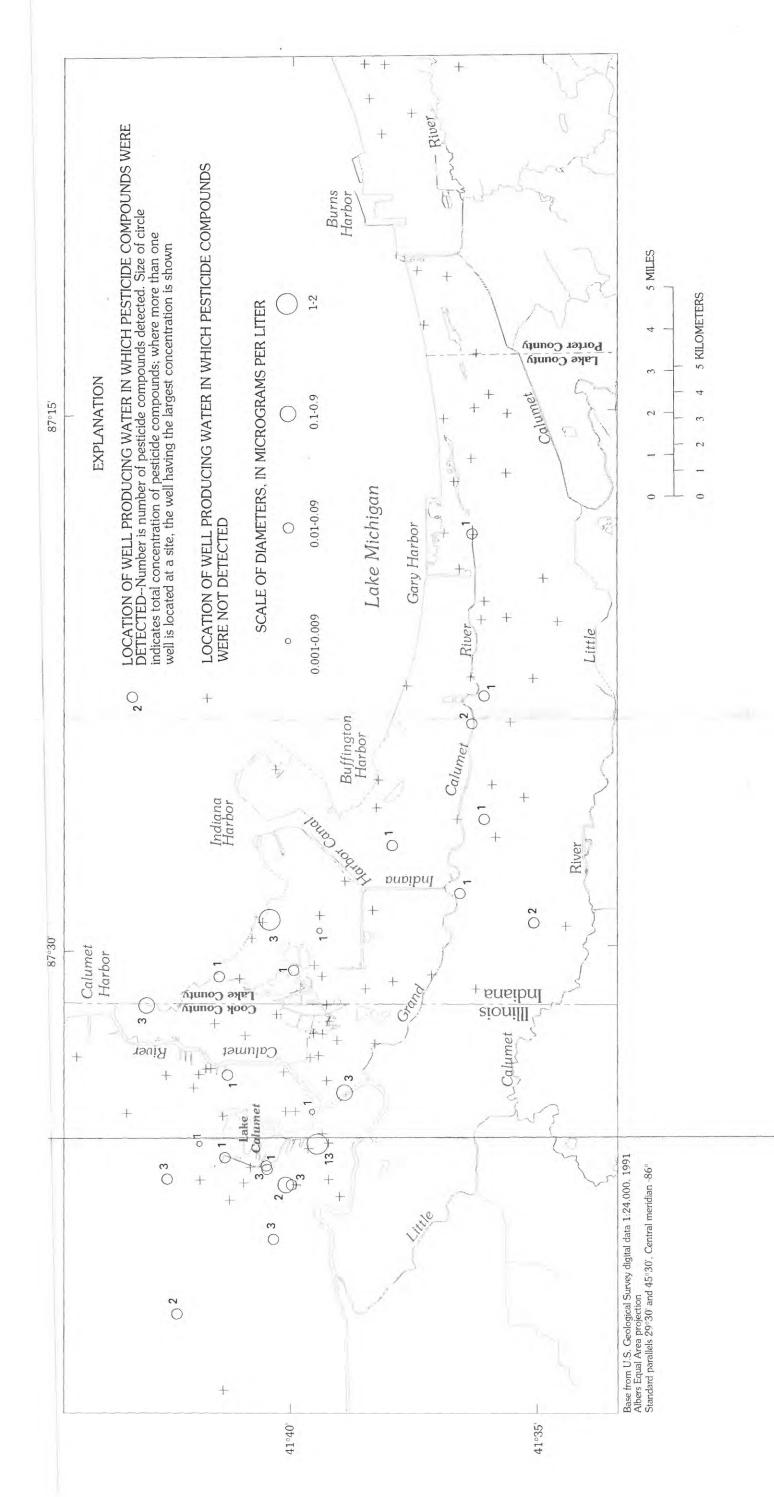


Figure 11. Distribution of pesticide compounds in ground water in the Calumet Region, Indiana and Illinois, June 1993.

9 wells (table 27). Although the laboratory reported 59 individual detections of pesticide compounds, only 8 of the reported concentrations are larger than the quantitation limit required by the USEPA Contract Laboratory Program. Concentrations of p,p'-DDT exceeded the quantitation limit in water from wells BH7S (S-065), BH7I (S-061), BH18I (S-109), and FILO1 (S-123). Concentrations of p,p'-DDD exceeded the quantitation limit in water from wells D10 (S-019) and BH7I (S-061). Water from well I2 (S-102) contained concentrations of beta benzene hexachloride and heptachlor that exceeded the quantitation limit.

Water from well I2 (S-102) contained the largest number (14) and largest total concentration (1.78 µg/L) of pesticide compounds. This well is southwest of Lake Calumet in an area of modified land near a waste-disposal site. The pesticide compounds detected in water from well I2 may be present in the fill materials at the site or may result from a spill or leakage of these chemicals. The large number of pesticides and other organic compounds detected indicates waste products or contaminated fill rather than a single compound. Therefore, the pesticide compounds in this water are not likely the result of normal spraying.

A total concentration of $1.52 \,\mu\text{g/L}$ of pesticide compounds was detected in water from D10 (S-019). This well is northwest of the Indiana Harbor Canal near petroleum industry. Three pesticide compounds were detected in water from this well; however, p,p'-DDD, at a concentration of $1.5 \,\mu\text{g/L}$, is the principal pesticide detected in this water.

At eight sites having two or more paired wells, pesticide compounds were detected in the sample from at least one well. At five of the sites, the largest concentration was detected in the sample from the shallow well. At two sites the largest concentrations were in water from the deep wells, and at one site the largest concentration was detected in the sample from the well screened at an interme-

diate depth. At this site, pesticide compounds also were detected in water from the deep well but were not detected in water from the shallow well.

Compounds that contain PCB's were detected in water from only three of the wells that were sampled (table 26, appendix 3). None of the reported concentrations of PCB's was larger than the quantitation limit. The largest concentration, 0.99 µg/L, was detected in water from well A3 (S-044). This well is completed in the Calumet aquifer and is north of the Grand Calumet River near steel industry. Water from well I2 (S-102) contained 0.52 µg/L of PCB's, and water from well FILO4 (S-125) contained 0.17 µg/L of PCB's. These wells are completed near the water table in the confining unit and are southwest of Lake Calumet in areas of modified land and waste disposal. Water from wells A3 and I2 exceeded the USEPA MCL of 0.5 µg/L for total PCB's (U.S. Environmental Protection Agency, 1992).

Comparisons of Ground-Water Quality in the Study Area

Results of the chemical analyses of water from 128 wells indicate that ground-water quality has changed in parts of the study area as a result of industrialization and urbanization. This finding is neither unique (numerous other reports have documented ground-water contamination in this area) nor is it surprising, considering the shallow depth to ground water, the permeable geologic materials at land surface in most of the study area, and the Calumet Region's long history of industrial and urban development.

In order to identify changes in ground-water quality, the natural quality must be known. No records are available to indicate what the ground-water quality in the study area was before development. Therefore, the natural water quality only can be inferred on the basis of samples collected from wells that are not likely to be affected by human activities because of their location away from industrial and urban areas. For this study, the

Table 27. Maximum Contaminant Levels for compounds containing pesticides or polychlorinated biphenyls and summary of detections in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993

[CAS, Chemical Abstract Service; USEPA, U.S. Environmental Protection Agency; µg/L, microgram per liter; MCL, Maximum Contaminant Level; n.r., no regulation; n.a., not applicable; PCB, polychlorinated biphenyl. Source: U.S. Environmental Protection Agency]

Compound name	CAS registry number	USEPA MCL (µg/L)	Number of wells with compound	Number of wells exceeding MCL
alpha-BHC	319-84-6	n.r.	1	n.a.
beta-BHC	319-85-7	n.r.	1	n.a.
delta-BHC	319-86-8	n.r.	1	n.a.
Aldrin	309-00-2	n.r.	4	n.a.
alpha-Chlordane	5103-71-9	n.r.	2	n.a.
gamma-Chlordane	5103-74-2	n.r.	3	n.a.
p,p'-DDD	72-54-8	n.r.	4	n.a.
p,p'-DDE	72-55-9	n.r.	3	n.a.
p,p'-DDT	50-29-3	n.r.	9	n.a.
Dieldrin	60-57-1	n.r.	4	n.a.
Endosulfan I	959-98-8	n.r.	1	n.a.
Endosulfan II	33213-65-9	n.r.	4	n.a.
Endosulfan sulfate	1031-07-8	n.r.	4	n.a.
Endrin	72-20-8	2 ^a	2	0
Endrin ketone	53494-70-5	n.r.	1	n.a.
Endrin aldehyde	7421-36-3	n.r.	14	n.a.
Heptachlor	76-44-8	.4	2	0
Methoxychlor	72-43-5	40	2	0
Aroclor 1242, PCB	53469-21-9	.5	1	1
Aroclor 1248, PCB	12672-29-6	.5	1	0
Aroclor 1254, PCB	11097-69-1	.5	1	1

^aProposed.

wells having water that most likely represents natural water quality are in Porter County in the eastern part of the study area (fig. 2). Shallow wells at the 10 sites in Porter County were selected to provide the best description of natural water quality in the Calumet aquifer. These wells range in depth from 9 to 62 ft.

Water from the shallow wells in Porter County is typically a calcium bicarbonate type having a median pH of 7.2 and small to moderate concentrations of dissolved solids (table 28). Comparison of tables 28 and 17 indicates that except for ammonia nitrogen, iron, and magnesium, concentrations of common ions are much smaller in water from shallow wells in Porter County than in all wells in the Calumet aquifer taken together. The median concentration of ammonia nitrogen is slightly larger in water from shallow wells in Porter County; however, the median concentration of iron is more than twice that of water from all the Calumet aquifer. The median concentration of magnesium in water from shallow wells in Porter County is similar to the median for water from all the Calumet aquifer.

Trace elements typically were not detected in water from shallow wells in Porter County. Four of the eight trace elements that were detected in water from these wells were detected in more than half of the samples collected for this study. Except for aluminum, barium, and zinc, trace elements generally were detected in small concentrations in water from shallow wells in Porter County. Concentrations of aluminum larger than 100 µg/L were detected in water samples from 230-24 (S-017), D-5A (S-020), and W-1A (S-028) (table 18, appendix 3). Aluminum is the third most abundant element in the earth's crust (Gilluly and others, 1968, p. 11), although it usually is not present in natural water at large concentrations except in water having low pH (Hem, 1985, p. 73). Values for pH of about 6 were measured in water from the three wells having relatively large concentrations of aluminum. Barium was detected in 127 of the 128 samples collected for this study, and its presence in ground water in the study area appears to be derived largely from natural sources—probably from dissolution of barite, a common and widely distributed mineral (Hurlbut, 1971, p. 343). The detection of relatively large concentrations of zinc (more than 400 mg/L) in water from 230-24 (S-017), D-5A (S-020), 24 (S-026), and 25 (S-027) is a result of these wells having galvanized steel casings. Zinc is the principal element in galvanizing materials (Aroian, 1958, p. 718).

Detection of several trace elements such as lead and mercury in water from shallow wells in Porter County indicates that ground water in this area may not be completely unaffected by human activities. Lead was detected in water from five wells, and mercury was detected in water from six wells. Although detected concentrations are small, the presence of these elements is not easily explained by natural sources. Lead was detected in two of the sampling-device blanks collected during this study; however, that device was not used to collect the samples in Porter County. Atmospheric deposition is a possible source for these elements. Lead and mercury are released to the atmosphere as a result of particulate emissions from industrial smokestacks and from burning of fossil fuels (Stumm and Morgan, 1981, p. 737). Willoughby (1995) determined a median concentration of 1.3 µg/L for lead in 36 samples of precipitation collected at Gary, Ind. Mercury was not detected in any precipitation samples from that study at a reporting limit of 0.1 µg/L.

Changes in ground-water quality are most easily demonstrated by the organic compounds detected during this study. Target and tentatively identified VOC's were detected in water from wells completed in the Calumet aquifer, confining unit, and Silurian-Devonian aquifer. Benzene, toluene, and xylene, which are components of petroleum and coal tar, were the most frequently detected VOC's during this study. Vinyl chloride and 1,2-dichloroethene, which are common industrial compounds, were not detected as frequently as other VOC's but were detected at one well in

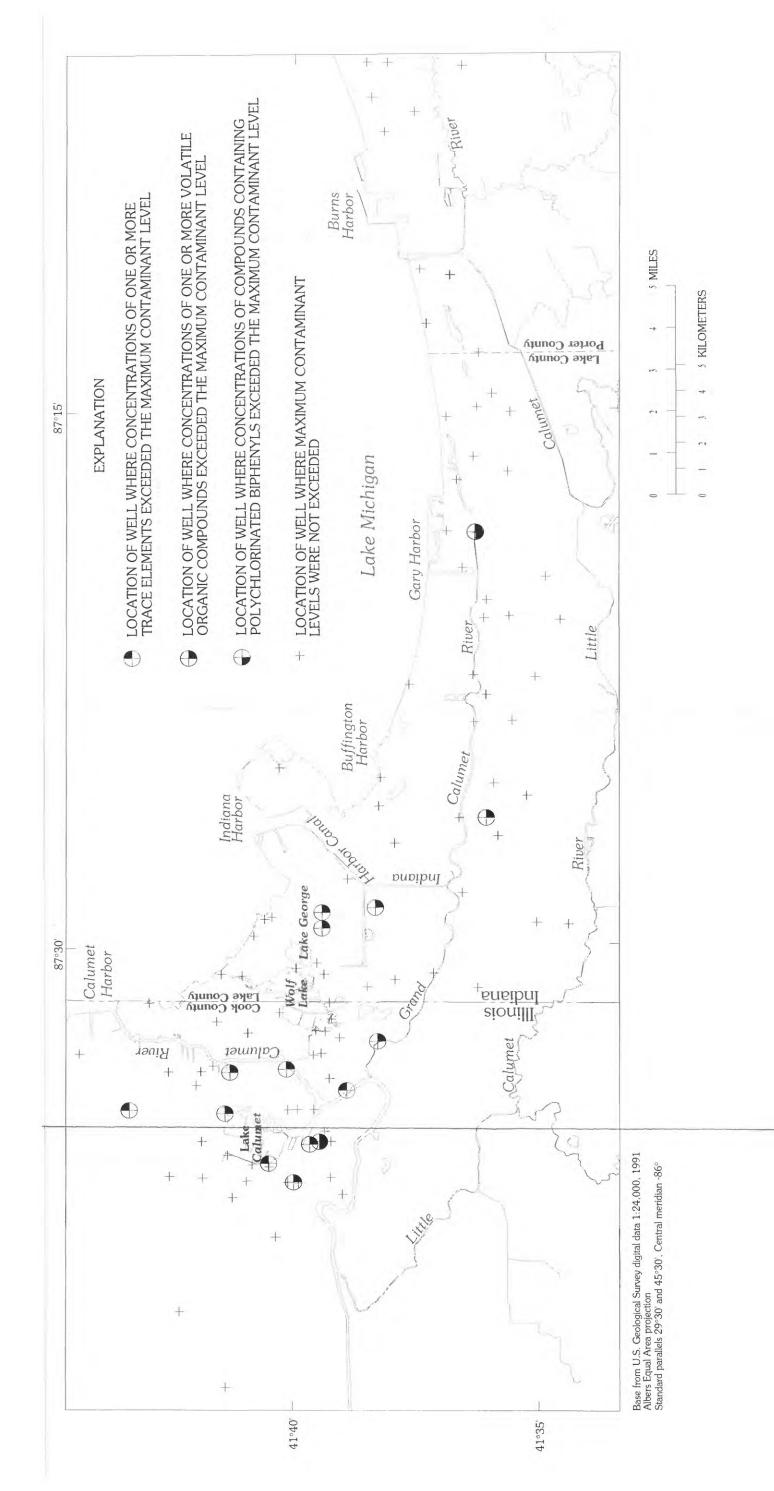
Table 28. Statistical summary of water quality for 10 shallow wells in Porter County selected to represent natural ground-water quality in the Calumet Region, Indiana and Illinois, June 1993

[mv, millivolts; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter at 25°C; μ g/L, microgram per liter. Wells and corresponding sample-identification numbers included in this analysis are G-1(S-009), 230-24(S-017), D-5A(S-020), 225(S-021), 24(S-026), 25(S-027), W-1A(S-028), 244-65(S-053), 232-45(S-082), and 106(S-084)]

Water-quality measurement, property, or constituent	Units	Median	Minimum	Maximum
Onsite measurements		-74		
pН	pH units	7.2	6.0	7.5
Oxidation-reduction potential	mv	-105	-167	89
Dissolved oxygen	mg/L	.15	0	6.1
Specific conductance	$\mu S/cm$	493	164	1,190
Water-quality properties and common	n ions			
Calcium	mg/L	57.1	10.7	301
Magnesium	mg/L	18.4	5.03	50.6
Sodium	mg/L	15.0	1.14	103
Potassium	mg/L	1.94	.52	26.2
Alkalinity	mg/L	174.5	41.8	289
Sulfate	mg/L	41.0	<5.0	660
Chloride	mg/L	16.8	6.2	138
Silica	mg/L	12.3	6.03	29.7
Dissolved solids	mg/L	308	95	1,324
Suspended solids	mg/L	6.75	<3	15.5
Ammonia nitrogen	mg/L	.55	<.1	2.6
Iron	mg/L	3.33	.024	29.6
Manganese	mg/L	.185	<.0016	1.23
Total organic carbon	mg/L	8.5	<2.0	26.9
Frace elements and cyanide				
Aluminum	μg/L	<25.9	<20.9	383
Antimony	μg/L	<17.9	< 15.7	<17.9
Arsenic	μg/L	<1.7	<1.7	15.3
Barium	μg/L	36.6	14.7	229
Beryllium	μg/L	<.5	<.5	<1.2
Cadmium	μg/L	<1.7	<1.5	<1.7
Chromium	μg/L	<5.8	<5.1	< 5.8
Cobalt	μg/L	<3.8	<2.5	<3.8
Copper	μg/L	<4.2	<4.0	<4.2
Lead	μg/L	<1.9	<1.1	4.6
Mercury	μg/L	<.1	<.1	.19
Nickel	μg/L	<6.1	<4.7	<6.1
Selenium	μg/L	<2.3	<2.3	2.9
Silver	μg/L	<3.8	<3.8	<5
Vanadium	μg/L	<3.3	<2.6	5
Zinc	μg/L	4.0	<3.7	1,090
Cyanide	μg/L	<10	<10	<10

extremely large concentrations. Target and tentatively identified VOC's were detected more frequently and in larger concentrations in water from wells in industrial areas or near areas of fill or waste disposal than in residential or natural areas. No target or tentatively identified VOC's were detected in water from shallow wells in Porter County.

Tentatively identified SVOC's were detected more frequently than other organic compounds and were detected most frequently in water from wells in residential and commercial areas. Tentatively identified SVOC's were detected in water from more than half of the wells and from wells screened in all four geohydrologic units. The largest concentrations and numbers of detected compounds, however, were reported for water from wells completed in the Calumet aquifer or confining unit and near industrial areas and areas of waste disposal. Phenol, phenanthrene, and naphthalene, which are components of coal tar and have a variety of industrial uses, were the most frequently detected SVOC's. Although all ground water contains organic matter (Freeze and Cherry, 1979, p. 86), the types of organic compounds detected during this study and the pattern of detection indicate that the presence of these compounds in ground water most likely is the result of industrial and wastedisposal activities.


Except for 1 mg/L of di-*n*-octylphthalate in water from 232 (S-082), target SVOC's that were not qualified by the quality-assurance audit were not detected in water from wells in Porter County. As previously discussed, the detection of this compound may have resulted from contamination in the field or laboratory and may not be representative of ground-water quality. Tentatively identified SVOC's were detected in water from 4 of the 10 shallow wells in Porter County that were used to illustrate natural water quality.

Pesticide compounds were detected in water from wells completed in the Calumet aquifer, confining unit, and Silurian-Devonian aquifer. Most of these wells are near areas of waste disposal. The detected pesticide compounds are primarily insecticides and degradation products of insecticides (Briggs and others, 1992, p. 81–196). Most

of the detected pesticides are chlorinated hydrocarbon compounds that tend to bioaccumulate and are persistent once they are released into the environment (Briggs and others, 1992, p. 212). The use of several pesticides detected during this study—including endrin, dieldrin, and p,p'-DDTwas banned in the United States during the 1970's (Briggs and others, 1992, p. 81–196). The presence of pesticide compounds in water from the Silurian-Devonian aquifer is indicative of the mobility and persistence of these compounds. Compounds containing PCB's generally were not detected during this study, although two of the three detected concentrations of these compounds exceeded the USEPA MCL for total polychlorinated biphenyls. Compounds containing pesticides and PCB's were not detected in water from shallow wells in Porter County.

Water from 15 wells, or about 12 percent of the sampled wells, had concentrations of one or more substances that exceeded an established USEPA MCL (fig. 12). MCL's for trace elements were exceeded in water from four wells. The MCL for chromium was exceeded in one sample. USEPA action levels for copper and lead, which are basically MCL's applied at the point of use, were exceeded in one and two samples. Volatile organic compounds were detected in water from 12 wells at concentrations larger than established MCL's. Concentrations of benzene exceeded the MCL in 11 samples. Concentrations of 1,1-dichloroethylene exceeded the MCL in one sample and concentrations of vinyl chloride exceeded the MCL in two samples. Compounds containing PCB's exceeded the MCL in two samples. Semivolatile organic compounds and pesticide compounds were not detected in concentrations that exceeded established MCL's (U.S. Environmental Protection Agency, 1992).

Figure 12 and most of the figures showing distribution of water-quality constituents in this report indicate that the frequency of detection and the concentration of many constituents in ground water increases from east to west across the study area. An increase from south to north is less obvious. This observed pattern of water quality corresponds to the pattern of industrialization and urbaniza-

et Region, Indiana and Illinois, producing water in which Maximum Contaminant Levels were exceeded in June 1993. Figure 12. Locations of wells in the Calur

tion, which also increases from east to west and south to north in the study area. Moreover, the confining unit is at land surface in much of the Illinois part of the study area. Ground water in the confining unit would contain, through natural processes of ion exchange, larger amounts of dissolved inorganic substances than would water in the Calumet aquifer, owing to the abundance of clay minerals and slow rate of flow in the confining unit. This effect is shown by the median concentration of dissolved solids for water from the confining unit, which is more than twice those of the other geohydrologic units.

A third factor that affects the distribution of ground-water quality shown on figure 12 and other figures in this report is the selection of wells that were sampled. Most wells sampled during this study were installed for previous studies. Most of the wells in Indiana intentionally were placed away from areas of known ground-water contamination (Fenelon and Watson, 1993, p. 7); in contrast, many of the wells in Illinois were installed in locations where ground-water contamination was expected (George Roadcap, Illinois State Water Survey, oral commun., 1994).

In contrast to MCL's, SMCL's were exceeded more frequently in the water samples collected for this study. SMCL's for dissolved solids, iron, and manganese were exceeded in more than half of the samples. Concentrations of aluminum and sulfate exceeded the SMCL's in approximately 25 percent of the samples. Large concentrations of iron and manganese are common in ground water in Indiana (Bechert and Heckard, 1966, p. 107). To a lesser extent, sulfate is common, but its presence in ground water is varied in Indiana (Clark, 1980, p. 83). Although these constituents are present naturally in ground water, very large concentrations may indicate contamination.

Clark (1980, p. 80) lists the normal range for concentrations of iron in ground water in Indiana as 0 to 3.0 mg/L. The normal range for manganese is 0.01 to 1.0 mg/L, and the normal range for sulfate is 0 to 1,000 mg/L (Clark, 1980, p. 80–81). The median concentrations for these constituents determined during this study are within

these normal ranges; however, the ranges of concentrations during this study exceeded the normal ranges (table 17). Concentrations of iron and manganese found during this study are similar to those reported by Fenelon and Watson (1993) who described ground-water quality in part of northern Lake County. Concentrations of dissolved solids and sulfate found during this study are similar to those reported by Roadcap and Kelly (1994) who describe ground-water quality in the vicinity of Lake Calumet. Concentrations of aluminum and sulfate found during this study generally are larger than those reported for the two other studies.

The data collected during this study show that not all ground water in the study area is contaminated and that the largest changes in water quality are associated with waste-disposal and industrial sites, as shown by increased dissolved-solids concentrations and the presence of organic compounds in water from wells near these sites. Many of the detected organic compounds can be attributed to industrial activities. For example, benzene, toluene, and xylene (components of gasoline) were detected in water from some wells in the vicinity of petroleum industry, and phenol and naphthalene (by-products of coal coking) were detected in water from some wells near steel industry. Water from some wells near areas of waste disposal contained the largest concentrations and widest variety of dissolved constituents, reflecting the variety of wastes disposed of at these sites.

A more rigorous analysis of the data by land use is not possible because of uncertainties about past land use and landfilling activities. For example, one site near Gary that formerly had been a petroleum refinery most recently was operated as a chemical-recycling facility and is now abandoned. Prior to these activities, the original ridge and swale topography was altered by filling of low areas and grading of the tops of ridges. In fact, much of the entire study area originally contained numerous wetlands that were filled or modified to provide suitable building areas. The nature of the fill materials is not always known. The widespread disposal of slag in the study area is shown to have an effect on ground-water quality primarily by

raising pH. The consequence of extremely high pH is not understood completely. The variety of compounds detected in water from wells near areas of slag disposal probably reflects the variety of materials that were disposed of along with the slag.

SUMMARY

During June 1993, the USGS, in cooperation with the USEPA, collected water samples from 128 wells in a large industrial and urban area in northwestern Indiana and northeastern Illinois. Samples were collected from wells screened in one of four geohydrologic units: a surficial sand aquifer (Calumet aquifer), a clay confining unit, confined sand aquifers, and a carbonate-bedrock aquifer (Silurian-Devonian aquifer). Samples were analyzed by U.S. Environmental Protection Agency contract laboratories for selected water-quality properties, common ions, trace elements, volatile and semivolatile organic compounds, and compounds containing pesticides or PCB's. Onsite measurements of water temperature, pH, oxidationreduction potential, dissolved oxygen, and specific conductance were made during sample collection.

The Silurian-Devonian aquifer and clay confining unit underlie the entire study area. Confined sand aquifers are present within the confining unit in the eastern part of the study area. The Calumet aquifer is at land surface in the eastern two-thirds of the study area; the confining unit is at land surface in the western third of the study area.

Measured pH of ground water in the study area ranged from 5.3 to 12.1; the median was 7.2. Median values of pH are larger in water from the Silurian-Devonian and confined sand aquifers than in water from the other geohydrologic units. Values of pH larger than 8.5 were associated with water from bedrock wells or from wells in areas of filled or modified land. The largest values of pH were measured in water from wells located near areas used to dispose of slag from local steel industry.

Specific conductance ranged from 106 to 5,980 μ S/cm; the median was 828 μ S/cm. Concentrations of dissolved solids ranged from 95 mg/L to 6,780 mg/L; the median was 674 mg/L. Median values of specific conductance and dissolved solids were largest for water from the confining unit and smallest for water from the Silurian-Devonian aquifer.

Water from wells in the Silurian-Devonian aquifer is predominantly a sodium bicarbonate type. Water types in confined sand aquifers and the confining unit are varied. Water types from wells in the Calumet aquifer also are varied, although approximately 42 percent of the wells in this geohydrologic unit produced water in which calcium and bicarbonate are the dominant cationanion pair. Samples from several shallow wells in the confining unit and the Calumet aquifer, and one well in a confined sand aquifer, were classified as sodium chloride-type water. Except for the well in a confined sand aquifer, the occurrence of sodium chloride may indicate the effect of deicing salts that have washed from the roadway and entered the shallow ground water. The presence of sodium chloride in water from a confined sand aquifer may result from upward flow of water from shale bedrock that underlies the unconsolidated sediments in the extreme eastern part of the study area.

The largest concentrations of trace elements were in samples from wells located in or near industrial areas or areas of waste disposal; however, water from several wells located in residential areas had relatively large concentrations of trace elements. Barium, the most frequently detected trace element in this study, was detected in all but one sample. Arsenic, lead, and mercury were detected in more than half of the samples. The MCL established by the USEPA for chromium was exceeded in one sample. SMCL's were exceeded in 29 samples for aluminum and in 1 sample for copper.

A total of 14 volatile organic compounds on the USEPA's target compound list was detected in samples from 20 wells. Volatile organic compounds were detected in water from the Calumet and Silurian-Devonian aquifers and from the confining unit. Volatile organic compounds were detected in water from wells located near industrial and waste-disposal sites and in areas of filled or modified land containing sand, slag, construction debris, and other materials. Acetone, benzene, toluene, and xylene were the most frequently detected volatile organic compounds. Concentrations of benzene exceed the MCL in 11 samples. The MCL for vinyl chloride was exceeded in two samples.

A total of 23 semivolatile organic compounds on the USEPA's target compound list was detected in samples from 56 wells. Semivolatile organic compounds were detected in water from the Calumet and Silurian-Devonian aquifers and from the confining unit. The largest concentrations of semivolatile organic compounds were detected in water from wells located near waste-disposal sites. Phenol, phenanthrene, and naphthalene are among the compounds detected most frequently during this study. These compounds, along with orthocresol and paracresol, were detected in relatively large

concentrations compared to the other semivolatile organic compounds. The MCL for benzo[b]fluoranthene was exceeded in one sample.

A total of 18 pesticide compounds was detected in water from 29 wells. Pesticides were detected in water from the Calumet and Silurian-Devonian aquifers and from the confining unit. Pesticide compounds were detected in water from wells near industrial and waste-disposal facilities and from five wells in residential areas. The compounds most frequently detected during this study were endrin aldehyde, which was detected in water from 14 wells, and p,p'-DDT, which was detected in water from 9 wells. Pesticides were not detected in water from any wells in the eastern part of the study area.

Compounds that contain PCB's were detected in water from only three of the wells that were sampled. PCB's were detected in water from the Calumet aquifer and the confining unit; one well is near industry, and two wells are in areas of modified land near waste disposal. Two of the detected concentrations of PCB's exceed the MCL.

REFERENCES CITED

- Anderson, D.C., and Brown, K.W., 1981, Organic leachate effects on the permeability of clay liners, *in* Proceedings of the National Conference on Management of Uncontrolled Hazardous Wastes, October 28–30, 1981, Washington, D.C.: p. 223–229.
- Aroian, L.A., and others, 1958, Van Nostrand's scientific encyclopedia (3d ed.): Princeton, N.J., D. Van Nostrand Company, 1,839 p.
- Bechert, C.H., and Heckard, J.M., 1966, Ground water, in Lindsey, A.A., ed., Natural features of Indiana: Indianapolis, Indiana Academy of Science, p. 100–115.
- Briel, L.I., 1993, Documentation of a multiple-technique computer program for plotting major-ion composition of natural waters: U.S. Geological Survey Open-File Report 93-74, 88 p.
- Briggs, S.A., and the staff of Rachel Carson Council, 1992, Basic guide to pesticides—Their characteristics and hazards: Washington, D.C., Taylor & Francis, 283 p.
- Brown, K.W.; Green, J.W.; and Thomas, J.C., 1983, The influence of selected organic liquids on the permeability of clay liners, *in* Proceedings of the 9th Annual Symposium on the Land Disposal of Hazardous Wastes: Cincinnati, Ohio, U.S. Environmental Protection Agency, EPA-600/9-83-018, p. 114–125.
- Brown, K.W.; Thomas, J.C.; and Green, J.W., 1986, Field cell verification of the effects of concentrated organic solvents on the conductivity of compacted soils: Hazardous Waste and Hazardous Materials, v. 3, p. 1–19.
- Budavari, Susan, ed., 1989, The Merck index—An encyclopedia of chemicals, drugs, and biologicals: Rahway, N.J., Merck & Company, [variously paginated].
- Burdick, D.L., and Leffler, W.L., 1983, Petrochemicals for the nontechnical person: Tulsa, Okla., Penn Well Publishing Company, 238 p.
- Callahan, M.A.; Slimak, M.W.; Gabel, N.W.; May, I.P.; Fowler, C.F.; Freed, J.R.; Jennings, P.; Durfee, R.L.; Whitmore, F.C.; Maestri, B.; Mabey, W.R.; Holt,

- B.R.; and Gould, C., 1979, Water-related environmental fate of 129 priority pollutants: Washington, D.C., U.S. Environmental Protection Agency, v. 2 [variously paginated].
- Clark, G.D., ed., 1980, The Indiana water resource— Availability, uses, and needs: Indianapolis, Ind., Governor's Water Resources Study Commission, Indiana Department of Natural Resources, 508 p.
- Colton, C.E., 1985, Industrial wastes in the Calumet area, 1869–1970: Champaign, Ill., Illinois Hazardous Waste Research and Information Center Research Report 001, 124 p.
- Cook, S.G., and Jackson, R.S., 1978, The Bailly area of Porter County, Indiana: Evanston, Ill., Robert Jackson and Associates, 110 p.
- Cravens, S.J., and Zahn, A.L., 1990, Ground-water quality investigation and monitoring program design for the Lake Calumet area of southeast Chicago: Savoy, Ill., Illinois Hazardous Waste Research and Information Center Contract Report 496, 112 p.
- Crawford, C.G., and Wangsness, D.J., 1987, Streamflow and water quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984: U.S. Geological Survey Water-Resources Investigations Report 86-4208, 137 p.
- Drever, J.I., 1982, The geochemistry of natural waters: Englewood Cliffs, N.J., Prentice-Hall, 388 p.
- Fenelon, J.M., and Watson, L.R., 1993, Geohydrology and water quality of the Calumet aquifer, in the vicinity of the Grand Calumet River/Indiana Harbor Canal, northwestern Indiana: U.S. Geological Survey Water-Resources Investigations Report 92-4115, 151 p.
- Fenneman, N.M., 1938, Physiography of eastern United States: New York, McGraw-Hill Book Company, 714 p.
- Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Englewood Cliffs, N.J., Prentice Hall, 604 p.
- Gilluly, J.; Waters, A.C.; and Woodford, A.O., 1968, Principles of geology (3d ed.): San Francisco, W.H. Freeman and Company, 687 p.
- Gray, H.H., 1982, Map of Indiana showing topography of the bedrock surface: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 35.

REFERENCES CITED—Continued

- Gray, H.H., 1983, Map of Indiana showing thickness of unconsolidated deposits: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 37.
- Gray, H.H., 1989, Quaternary geologic map of Indiana: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 49.
- Gray, H.H.; Ault, C.H.; and Keller, S.J., 1987, Bedrock geologic map of Indiana: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 48.
- Hammond, C.R., 1993, The elements, *in* Lide, D.R., ed., CRC handbook of chemistry and physics (74th ed.): Boca Raton, Fla., CRC Press, p. 4–1 to 4–34.
- Hartke, E.J.; Hill, J.R.; and Reshkin, Mark, 1975, Environmental geology of Lake and Porter Counties, Indiana—An aid to planning: Bloomington, Ind., Indiana Geological Survey Special Report 11, 57 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.):U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hurlbut, C.S., 1971, Dana's manual of mineralogy (18th ed.): New York, John Wiley & Sons, 579 p.
- Kay, R.T.; Duwelius, R.F.; Brown, T.A.; Micke, F.A.; and Witt-Smith, C.A., 1996, Geohydrology, water levels and directions of flow, and occurrence of light-nonaqueous-phase liquids on ground water in northwestern Indiana and the Lake Calumet Area of northeastern Illinois: U.S. Geological Survey Water-Resources Investigations Report 95-4253, 84 p., 1 Plate.
- Leighton, M.M.; Ekblaw, G.E.; and Horberg, C.L., 1948, Physiographic divisions of Illinois: Journal of Geology, v. 56, no. 1, p. 16–33.
- Lucius, J.E.; Olhoeft, G.R.; Hill, P.L.; and Duke, S.K., 1990, Properties and hazards of 108 selected substances—1990 edition: U.S. Geological Survey Open-File Report 90-408, 559 p.
- Malott, C.A., 1922, The physiography of Indiana, in Logan, N.W., and others, Handbook of Indiana geology: Indiana Department of Conservation, Division of Geology, Publication 21, p. 112–124.

- Moore, P.A., 1959, The Calumet Region—Indiana's last frontier, with an afterword by Lance Trusty, 1977: Indiana Historical Bureau, Indiana Historical Collections, v. 39, 685 p.
- Morrison, R.T., and Boyd, R.N., 1980, Organic chemistry (3d ed.): Boston, Mass., Allyn and Bacon, 1,258 p.
- National Oceanic and Atmospheric Administration, 1982, Monthly normals of temperature, precipitation, and heating and cooling degree days 1951–80, Indiana: Asheville, N.C., National Climatic Data Center, Climatography of the United States 81, 14 p.
- National Oceanic and Atmospheric Administration, 1993, Climatological data—Indiana: Asheville, N.C., National Climatic Data Center, v. 98, no. 6 (June), 20 p.
- Roadcap, G.S., and Kelly, W.R., 1994, Shallow groundwater quality and hydrogeology of the Lake Calumet area, Chicago, Illinois: Champaign, Ill., Illinois State Water Survey Interim Report [variously paginated].
- Rosenshein, J.S., and Hunn, J.D., 1968, Geohydrology and ground-water potential of Lake County, Indiana: Indiana Department of Natural Resources, Division of Water Bulletin 31, 36 p.
- Schneider, A.F., 1966, Physiography, *in* Lindsey, A.A., ed., Natural features of Indiana: Indianapolis, Ind., Indiana Academy of Science, p. 40–56.
- Schneider, A.F., and Keller, S.J., 1970, Geologic map of the 1° x 2° Chicago quadrangle, Indiana, Illinois, and Michigan, showing bedrock and unconsolidated deposits: Indiana Department of Natural Resources, Indiana Geological Survey Regional Geologic Map 4.
- Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M.; 1993, Environmental Organic Chemistry: New York, John Wiley and Sons, 681 p.
- Shaver, R.H.; Ault, C.H.; Burger, A.M.; Carr, D.D.; Droste, D.L.; Eggert, D.L.; Gray, H.H.; Harper, D.; Hasenmueller, N.R.; Hasenmueller, W.A.; Horowitz, A.S.; Hutchison, H.C.; Keith, B.D.; Keller, S.J.; Patton, J.B.; Rexroad, C.B.; and Wier, C.E.; 1986, Compendium of Paleozoic rock-unit stratigraphy in Indiana—A revision: Indiana Department of Natural Resources Geological Survey Bulletin 59, 203 p.

REFERENCES CITED—Continued

- Shedlock, R.J.; Cohen, D.A.; Imbrigiotta, T.E.; and Thompson, T.A., 1994, Hydrogeology and hydrochemistry of dunes and wetlands along the southern shore of Lake Michigan, Indiana: U.S. Geological Survey Open-File Report 92-139, 85 p.
- Sienko, M.J., and Plane, R.A., 1974, Chemical principles and properties (2d ed.): New York, McGraw-Hill Book Company, 788 p.
- Simms, D., and Daddow, R.L., 1994, Breakout session—Data validation, contract lab program (CLP), and analytical methods: Las Vegas, Nev., 1994 Department of Defense Environmental Contamination (DODEC) Program Conference, April 25–29, 1994, [variously paginated].
- Stumm, W., and Morgan, J.J., 1981, Aquatic Chemistry (2d ed.): New York, John Wiley and Sons, 780 p.
- U.S. Environmental Protection Agency, 1987, Handbook—Ground water: U.S. Environmental Protection Agency, EPA/625/6-87/016, 212 p.

- U.S. Environmental Protection Agency, 1989, Preparing perfect project plans—A pocket guide for the preparation of quality assurance project plans: U.S. Environmental Protection Agency, EPA/600/9-89/087, 62 p.
- U.S. Environmental Protection Agency, 1992, Drinking water regulations and health advisories: Washington, D.C., U.S. Environmental Protection Agency, 11 p.
- Watson, L.R.; Shedlock, R.J.; Banaszak, K.J.; Arihood, L.D.; and Doss, P.K., 1989, Preliminary analysis of the shallow ground-water system in the vicinity of the Grand Calumet River/Indiana Harbor Canal, northwestern Indiana: U.S. Geological Survey Open-File Report 88-492, 45 p.
- Willman, H.B., 1971, Summary of the geology of the Chicago area: Illinois State Geological Survey Circular 460, 77 p.
- Willoughby, T.C., 1995, Quality of wet deposition in the Grand Calumet River watershed, northwestern Indiana, June 30, 1992—August 31, 1993:
 U.S. Geological Survey Water Resources Report 95-4172, 55 p.

APPENDIX 1

SELECTED CHARACTERISTICS OF WELLS

[USGS, U.S. Geological Survey; °, degrees; ', minutes; ", seconds; SS, stainless steel; PVC, polyvinyl chloride; Galv, galvanized steel; BI, black iron; CA, Calumet aquifer; COMM, commercial; IND, industrial; NAT, natural; RES, residential; CS, confined sand aquifer; BR, carbonate-bedrock aquifer; WASTE, waste disposal; CU, confining unit; Table 1. Selected characteristics of wells from which water samples were collected in the Calumet Region, Indiana and Illinois, June 1993 --, no data]

Sample	Wei llow	atiti	a de la companya de l	USGS site identification	Land-surface altitude (feet above	Screened interval (feet below	Casing/ screen	Hydrologic	Primary land
S-001	E10	41° 37' 22"	87° 30′ 41″	413722087304101	586	6-9	SS	CA	COMM
S-002	BH21	41° 38′ 32″	87° 32′ 36″	413832087323601	587	3-13	PVC/SS	CA	ONI
S-003	230-58	41°37' 01"	87° 11′ 09″	413651087110502	611	49-55	PVC	CA	NAT
S-004	E20	41° 36′ 27″	87° 31′ 05″	413627087310500	592	8-8	SS	CA	RES
S-005	234-142	41°35′47″	87° 14′ 58″	413515087145501	613	130-135	PVC	CS	COMM
900-S	D40	41°38′35″	87° 28' 51"	413835087245101	584	4-7	SS	CA	IND
S-007	WP1	41°39′37″	87° 32′ 19″	413937087321901	587	15-20	PVC	CA	NAT
S-008	IC	41°35' 11"	87° 30′ 03″	413511087300302	590	53-58	PVC	BR	RES
8-006	Gl	41° 38′ 21″	.60 · L0 ° L8	413821087070901	623	40-45	BI	CA	IND
S-010	230-138	41° 36′ 51″	87° 11' 05"	413651087110501	611	114-119	PVC	CS	NAT
S-011	BH8	41°39′32″	87° 31′ 31″	413932087313101	584	15-30	PVC/SS	CA	WASTE
S-012	BH22	41°39′48″	87° 32' 18"	413948087321801	589	13-23	PVC/SS	CA	NAT
S-013	BH33	41° 40' 34"	87° 31′ 47″	414034087314701	587	13-23	PVC/SS	CA	WASTE
S-014	E2	41° 41′ 05″	87° 29′ 39″	414105087293900	585	3-6	SS	CA	COMM
S-015	D1	41° 40′ 52″	87° 29′ 12″	414052087291201	590	8-11	SS	CA	COMM
S-016	W P2	41° 39' 37"	87° 32′ 19″	413937087321902	587	9-12	PVC	CA	NAT
S-017	230-24	41°37'01"	87° 11′ 09″	413651087110503	611	24-27	Galv	CA	NAT
S-018	D11	41° 40′ 43″	87° 29′ 08″	414043087290801	288	17-22	SS	CA	IND
S-019	D10	41° 40′ 43″	87° 29′ 08″	414043087290802	588	7-10	SS	CA	IND
S-020	D-5A	41°38′35″	.01 ,90 _° 28	413836087061002	209	10-13	Galv	CA	NAT
S-021	225	41°36′45″	87° 05′ 18″	413645087051500	638	48-53	PVC	CA	RES
S-022	D20	41°39′41″	87° 29′ 00″	413941087290000	588	6-9	SS	CA	IND
S-023	D21	41°39′41″	87° 29′ 26″	413941087292600	584	13-18	SS	CA	ONI
S-024	E6	41°39′38″	87° 30′ 43″	413938087304301	286	17-22	SS	CA	COMM
S-025	E7	41°39′38″	87° 30′ 43″	413938087304302	286	2-5	SS	CA	COMM
S-026	24	41°38′17″	87° 05′ 13″	413817087051301	609	7-10	Galv	CA	NAT

Table 1. Selected characteristics of wells from which water samples were collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well name	Latitude	Longitude	USGS site identification number	Land-surface altitude (feet above sea level)	Screened interval (feet below ground level)	Casing/ screen material ¹	Hydrologic	Primary land use
S-027	25	41° 38′ 42″	87° 05′ 12″	413842087051201	909	11-14	BI/Galv	CA	NAT
S-028	W-1A	41° 36′ 25″	87° 13′ 20″	413625087132001	909	6-9	SS	CA	NAT
S-029	BH30	41°39′30″	87° 36′ 25″	413930087362501	587	10-20	PVC/SS	CO	RES
S-030	П	41°42′17″	87° 33′ 50″	414217087335001	585	79-84	PVC	BR	RES
S-031	BH31	(see S-036)							
S-032	П	41°39′38″	87° 35′ 07″	413938087350701	586	7-11	PVC	CU	WASTE
S-033	113	41° 42′ 10″	87° 35′ 25″	414210087352501	587	4-14	PVC	CU	WASTE
S-034	112	41°41′38″	87°35′48″	414138087354801	586	5-10	PVC	CO	WASTE
S-035	114	41°39′50″	87° 34′ 30″	413950087343001	589	10-15	PVC	CA	WASTE
S-036	BH31	41°39′47″	87° 30′ 25″	413947087302501	009	18-28	PVC/SS	CA	WASTE
S-037	D25	41°39′09″	87° 28′ 03″	413804087291102	588	8-5	SS	CA	IND
S-038	BH29	41° 39′ 16″	87° 36′ 54″	413916087365901	590	5-15	PVC/SS	CU	RES
S-039	BH26	41°41′09″	87°35′25″	414109087352501	592	8-18	PVC/SS	CU	RES
S-040	237-45	41°35′50″	87° 16′ 38″	413550087163800	809	34-39	PVC	CA	COMM
S-041	235-45	41° 36′ 29″	87° 14′ 26″	413629087142600	909	37-42	PVC	CA	RES
S-042	MW-5	41° 36′ 22″	87° 16′ 13″	413622087161301	602	4-7	SS	CA	NAT
S-043	MW-15	41° 36′ 52″	87° 16′ 54″	413652087165401	588	2-5	SS	CA	WASTE
S-044	A3	41°36′31″	87° 18′ 20″	413631087182000	980	3-6	SS	CA	IND
S-045	EI	41°38′44″	87° 31′ 04″	413844087310401	582	5-8	SS	CA	COMM
S-046	A2	41°37′06″	87° 18′ 18″	413706087181800	603	34-39	SS	CA	IND
S-047	BH27	41° 41′ 15″	87° 36′ 31″	414115087363101	685	11-21	PVC/SS	CO	RES
S-048	B2	41° 37' 52"	87° 22' 35"	413752087223500	809	43-48	SS	CA	IND
S-049	A1	41° 36′ 47″	87° 19′ 19″	413647087191901	604	18-21	SS	CA	IND
S-050	A4	41°36′30″	87° 18' 21"	413630087182100	603	18-23	SS	CA	IND
S-051	115	41° 40′ 11″	87°34′30″	414011087343001	980	10-15	PVC	CA	WASTE
S-052	244-125	41° 37′ 32″	87° 10′ 57″	413732087105701	629	115-120	PVC	CS	RES
S-053	244-65	41° 37′ 32″	87° 10' 57"	413732087105702	629	57-62	PVC	CA	RES
S-054	BH6	41°43′40″	87° 34′ 32″	414340087343291	503	11-21	PVC/SS	BR	RES

Table 1. Selected characteristics of wells from which water samples were collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well name	######################################	Oncitiode	USGS site identification	Land-surface altitude (feet above	Screened interval (feet below cround level)	Casing/ screen	Hydrologic	Primary land
S-055	BH4D	41° 44′ 42″	87° 32' 57"	414442087325702	587	23-33	PVC/SS	E E	RES
S-056	BH4S	41° 44′ 42″	87° 32' 57"	414442087325701	989	8-13	PVC/SS	CA	RES
S-057	BH24	41°41′13″	87° 32′ 22″	414113087322201	587	6-16	PVC/SS	CA	RES
S-058	IP	41°41' 32"	87° 36′ 59″	414132087365901	591	72-77	PVC	BR	RES
S-059	116	41° 40′ 23″	87°34′30″	414023087343001	588	9-14	PVC	CA	WASTE
090-S	121	41° 39′ 32″	87° 33′ 38″	413932087333801	890	7-12	PVC	CA	IND
S-061	BH71	41°39′10″	87° 33′ 58″	413910087335802	685	19-29	PVC/SS	CO	NAT
S-062	BH9S	41°39′29″	87°31′58″	413929087315801	585	13-23	PVC/SS	CA	NAT
S-063	BH15	41°41'20"	87° 30′ 47″	414120087304701	585	10-15	PVC/SS	CA	COMM
S-064	110	41° 40' 37"	87°36′07″	414037087360701	989	5-10	PVC	CC	IND
S-065	BH7S	41° 39' 10"	87° 33′ 58″	413910087335801	888	7-17	PVC/SS	CA	NAT
990-S	BH7D	41°39′10″	87° 33′ 58″	413910087335803	685	62-69	PVC/SS	BR	NAT
290-S	61	41° 40' 04"	87°35′52″	414004087355201	989	6-11	PVC	CO	WASTE
890-S	81	41°40′37″	87°36′04″	414037087360401	583	9-14	PVC	CU	WASTE
690-S	B7	41°36′17″	87° 22' 52"	413617087225202	969	8-11	SS	CA	WASTE
S-070	B5	41°36′32″	87° 23′ 40″	413632087234001	589	7-10	SS	CA	COMM
S-071	BH28	41° 41′ 56″	87° 33' 17"	414156087331701	585	7-17	PVC/SS	CA	RES
S-072	D67	41°36′47″	87° 28′ 25″	413647087282502	589	4-7	SS	CA	COMM
S-073	D68	41°36′47″	87° 28' 25"	413647087282501	589	18-23	SS	CA	COMM
S-074	C19	41°36′17″	87° 26′ 20″	413617087262001	592	2-5	SS	CA	QNI
S-075	C25	41°35′27″	87° 25′ 43″	413527087254301	865	2-5	SS	CA	WASTE
920-S	C18	41°36'07"	87° 25′ 22″	413607087252200	595	17-22	SS	CA	WASTE
S-077	B 10	41°35′44"	87° 23' 37"	413544087233700	209	17-20	SS	CA	RES
S-078	B3	41°36′33″	87° 22′ 20″	413633087222000	594	18-23	SS	CA	COMM
8-079	A20	41°35′03″	87° 19′ 35″	413503087193501	614	21-24	SS	CA	RES
S-080	W3	41° 36′ 09″	87° 14′ 28″	413609087142802	909	7-10	SS	CA	NAT
S-081	BH23	41° 40′ 38″	87°38′05″	414038087380501	622	8-18	PVC/SS	CA	RES
S-082	232-45	41°37′30″	87° 12′ 30″	413726087123600	969	38-43	PVC	CA	NAT

Table 1. Selected characteristics of wells from which water samples were collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well name	Latitude	Lonaitude	USGS site identification	Land-surface altitude (feet above sea level)	Screened interval (feet below ground level)	Casing/ screen material ¹	Hydrologic unit	Primary land use
S-083	105	41° 37' 44"	87° 06′ 37″	413744087063702	809	71-76	PVC	SO	IND
S-084	106	41° 37' 44"	87° 06′ 37″	413744087063701	809	20-25	PVC	CA	IND
S-085	E3	41° 40′ 13″	87° 30′ 33″	414013087303300	585	8-13	SS	CA	COMM
980-S	13	41° 39′ 58″	87°35′36″	413958087353601	585	3-13	PVC	CN	WASTE
S-087	122	41°39′42″	87° 32′ 56″	413942087325601	584	10-20	PVC	CA	RES
S-088	B8	41° 36′17″	87° 22′ 52″	413617087225201	969	32-37	SS	CA	COMM
S-089	BHID	41° 42′ 38″	87° 40′ 11″	414238087401102	999	75-90	PVC/SS	CO	RES
060-S	BHIS	41° 42′ 38″	87° 40′ 11″	414238087401101	898	5-15	PVC/SS	CU	RES
S-091	BH18S	41° 43' 15"	87° 31′ 31″	414315087313101	592	8-18	PVC/SS	CA	WASTE
S-092	BH2	41°41′40″	87° 42′ 19″	414140087421901	626	10-20	PVC/SS	CU	RES
S-093	BH25	41°41′51″	87° 32′ 02″	414151087320201	587	91-9	PVC/SS	CA	RES
S-094	BH14	41° 34′ 45″	87° 20′ 47″	413445087204701	610	61-6	PVC/SS	CA	RES
S-095	BH19	41°35′16″	87° 22′ 23″	413516087222301	602	10-20	PVC/SS	CA	RES
960-S	BH13	41°35′48″	87° 20′ 40″	413548087204001	603	61-6	PVC/SS	CA	RES
S-097	BH12	41° 36′ 20″	87° 20′ 44″	413620087204401	601	10-20	PVC/SS	CA	RES
860-S	BH20	41°36′15″	87° 20′ 13″	413615087201301	009	14-24	PVC/SS	CA	COMM
S-099	BH17	41°37′06″	87° 15′ 07″	413706087150701	599	10-20	PVC/SS	CA	NAT
S-100	D45	41°38'12"	87° 27′ 02″	413812087270201	989	6-9	SS	CA	RES
S-101	MW-1	41° 41′ 44″	87° 30′ 41″	414144087304101	587	ŀ	PVC	CA	COMM
S-102	12	41°39′44″	87°35′25″	413944087352501	288	5-15	PVC	CC	WASTE
S-103	BHSS	41°39′19″	87° 32′ 30″	413919087323001	584	10-15	PVC/SS	CA	RES
S-104	C3	41°38′28″	87° 25′ 13″	413828087251301	589	23-28	SS	CA	COMM
S-105	C4	41°38′28″	87° 25′ 13″	413828087251302	589	8-13	SS	CA	COMM
S-106	CI	41°38′30″	87° 26′ 00″	413830087260000	587	4-7	SS	CA	IND
S-107	ES	41°38′10″	87° 30′ 52″	413810087305201	587	9-12	SS	CA	RES
S-108	BHSD	41°39′19″	87° 32′ 30″	413919087323002	584	45-55	PVC/SS	CO	RES
S-109	BH18I	41° 43′ 16″	87° 31′ 31″	414316087313102	592	35-45	PVC/SS	CC	WASTE
S-110	BH32	41°41'41"	87°34′37″	414141087343701	286	8-18	PVC/SS	CO	WASTE

Table 1. Selected characteristics of wells from which water samples were collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

	TAY.	40.0	7	USGS site identification	(feet above	(feet below	screen	Hydrologic	land
inninger	RH11	41° 39' 52"	87° 32' 59"	413952087325901	Sed level)	ground revery	pVC/SS	T D	DSU NAT
S-112	BH18D	41° 43′ 16″	87° 31′ 31″	414316087313103	593	28-68	PVC/SS	BR.	WASTE
S-113	D70	41°35′15″	87° 29' 14"	413515087291401	603	6-9	SS	CA	RES
S-114	BH16D	41° 42′ 50″	87° 36′ 24″	414250087362402	597	88-78	PVC/SS	BR	WASTE
S-115	BH16S	41°42′50″	87°36′24″	414250087362401	969	28-38	PVC/SS	CO	WASTE
S-116	D75	41° 34′ 35″	87° 29′ 19″	413435087291901	109	2-8	SS	CA	RES
S-117	C12	41° 36′ 50″	87° 26′ 20″	413650087262000	584	13-18	SS	CA	NAT
S-118	LK13	41°35′59″	87° 27′ 03″	413559087270301	592	18-23	PVC	CA	NAT
S-119	120	41° 40' 25"	87° 33' 23"	414025087334301	592	10-15	PVC	CA	WASTE
S-120	6SM	41° 42' 15"	87° 33' 27"	414215087332701	588	13-18	SS	CO	IND
S-121	WS7	41° 42' 51"	87° 33' 28"	414251087332801	586	11-16	SS	CO	IND
S-122	WS2	41° 42′ 02″	87° 33′ 18″	414202087331801	594	10-20	SS	CO	ONI
S-123	FILO1	41° 40′ 23″	87°36′34″	414021087363402	009	68-62	SS	BR	WASTE
S-124	WSS	41°40′18″	87°36′45″	414018087364501	165	7-17	SS	CO	IND
S-125	FILO4	41°40′ 16″	87° 36′ 34″	414016087363401	593	61-6	SS	CO	WASTE
S-126	FILOS	41°40′21″	87°36′34″	414010087363402	592	70-80	PVC	BR	WASTE
S-127	FILO2	41°40′21″	87°36′34″	414021087363401	009	19-29	SS	CO	WASTE
S-128	FILO6	41°40′10″	87° 36′ 34″	414010087363401	591	61-6	SS	CO	WASTE
S-129	C2	41° 40' 31"	87° 24' 50"	414031087245001	594	14-19	SS	CA	IND

¹One material listed indicates casing and screen are both constructed of that material.

APPENDIX 2

QUALITY-ASSURANCE DATA

[mg/L, milligram per liter; CaCO₃, calcium carbonate; µg/L, microgram per liter; e, estimated; b, constituent also detected in laboratory calibration blanks; <, less than; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes] Table 3. Water-quality properties and concentrations of common ions in sampling-device blanks collected in the Calumet Region, Indiana and Illinois, June 1993

R-001 MB-1 0e 82.2b 47.1b 666.2 41.1b 41.1b 666.2 41.1b 41.	Sample number	Sample name	Acidity, (mg/L as CaCO ₃) (00435)	Calcium, dissolved (µg/L) (91051)	Magnesium, dissolved (µg/L) (91052)	Sodium, dissolved (µg/L) (91053)	Potassium, dissolved (µg/L) (91054)	Alkalinity (mg/L as CaCO ₃) (00417)	Sulfate, dissolved (mg/L) (00945)	Chloride, dissolved (mg/L) (00940)	Silica, dissolved (mg/L) (00955)
MB-3 0e <42.3 55b 511b MB-3 0e <42.3	R-001	MB-1	90	82.2b	47.1b	<66.2	<188	20.8e	<5e	<0.5	<0.04e
MB-3 0e <42.3 <46.4 <66.2 MB-4 0e 65.1b 47.2b 454b MB-5 15.4e 93.8b <46.4	R-002	MB-2	90	<42.3	55b	511b	<188	2.72e	<5e	<.5	<.04e
MB-5 15.4e 93.8b 47.2b 454b 46.4 46.4 46.4 46.4 46.2	R-003	MB-3	9 0	<42.3	<46.4	<66.2	The state of the state of</td <td>20.3e</td> <td><5e</td> <td><.5</td> <td><.04e</td>	20.3e	<5e	<.5	<.04e
MB-5 15.4e 93.8b <46.4 <66.2 MB-6 0 <42.3 <46.4 <66.2 MB-7 0 323b 193b 279b Sample Sulds Ned Gugls Ammonia (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Iron, (ug/L) (mg/L) (mg/L) (mg/L) (mg/L) MB-1 <20 <3c <0.1 <4.8 MB-2 <20 <3c <1 <4.8 MB-3 <20 <3c <1 <1.7b MB-4 <20 <3c <1 <1.9b MB-5 <20 <3c <1 <1.9b MB-6 <20 <3c <1 <6.8b MB-7 <20 <3c <1 <6.8b MB-6 <20 <3c <2c <6.8b MB-7 <2c <3c <2c <6.8b MB-6 <2c <4c <6.8b MB-7 <2c <2c <2c <2c <2c <2c <2c <2c <2c <td>R-004</td> <td>MB-4</td> <td>90</td> <td>65.1b</td> <td>47.2b</td> <td>454b</td> <td><188</td> <td>31.7e</td> <td><5e</td> <td><.></td> <td><.04e</td>	R-004	MB-4	90	65.1b	47.2b	454b	<188	31.7e	<5e	<.>	<.04e
MB-6 0 42.3 46.4 666.2 MB-7 0 323b 193b 279b	R-005	MB-5	15.4e	93.8b	<46.4	<66.2	<188	4.95e	<5e	<.5e	<.107e
MB-7 0 323b 193b 279b e Sample name (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Ammonia (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Iron, (mg/L) (mg/L) (mg/L) (mg/L) MB-1 <20	R-009	MB-6	0	<42.3	<46.4	<66.2	×188	1.24e	<5e	<.5e	<.04
e Sample name Sample (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Ammonia (dissolved dissolved (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Am solids solids (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) AMB-1 <20	R-013	MB-7	0	323b	193b	279b	252b	41.8e	<5e	<.5	<.04
e Sample name (mg/L) (mg/L) (mg/L) (mg/L) (μg/L) (μg/L) (mg/L) (μg/L) (μg/L) (μg/L) (μg/L) MB-1 <20 <3e <0.1 <4.8 MB-2 <20 <3 <.1 27.3b MB-3 <20 <3 <.1 11.7b MB-4 <20 <3e <.1 19b MB-5 <20 <3e <.1 19b MB-6 <20 <3e <.1 19b MB-7 <20 <3e <.1 19b MB-6 <20 <3e <.1 19b MB-7 <20 <3e <.1 19b MB-6 <2o <5e <6.8b MB-7 <2o <5e <6.8b			Dissolved	Suspended		lron,	Magnesium,	Total			
MB-1 <20	Sample number	Sample	solids (mg/L) (70301)	solids (mg/L) (70299)	Ammonia (mg/L) (00610)	dissolved (μg/L) (01046)	dissolved (µg/L) (01056)	carbon (mg/L) (00680)			
MB-2 <20 <3 <.1 2 MB-3 <20	R-001	MB-1	<20	<3e	<0.1	<4.8	<1.8	<2e			
MB-3 <20 <3 <.1 1 1 1 1 1 1 1 1 1	R-002	MB-2	<20	\$	~;	27.3b	<1.8	<2e			
MB-4 <20 <3e <.1 1 1 1 2 2 3e 4.5 3e 4.5 3e 4.5 3e 4.5 3e 4.5 3e 4.5 5 5 5 5 5 5 5 5 5	R-003	MB-3	<20	\$	-	11.7b	4.8	<2e			
MB-5 <20 4.5 .3e < MB-6 <20 <3 .2 MB-7 <20 <3 .4e 5	R-004	MB-4	<20	<3e	~ `	19b	≥ 1.8	<2e			
MB-6 <20 <3 .2 MB-7 <20 <3 .4e 5	R-005	MB-5	<20	4.5	.3e	<4.8	<1.8	<2e			
MB-7 <20 <3 .4e	R-009	MB-6	<20	\$.2	6.8b	<1.8	<2e			
	R-013	MB-7	<20	\$.4e	56.3b	12.2b	<2			

[μg/L, microgram per liter; <, less than; e, estimated value; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes] Table 4. Concentrations of trace elements and cyanide in sampling-device blanks collected in the Calumet Region, Indiana and Illinois, June 1993

Sample number	Sample name	Aluminum, dissolved (µg/L) (01106)	Antimony, dissolved (µg/L) (01095)	Arsenic, dissolved (μg/L) (01000)	Barium, dissolved (μg/L) (01005)	Beryllium, dissolved (μg/L) (01010)	Cadmium, dissolved (μg/L) (01025)	Chromium, dissolved (µg/L) (01030)	Cobalt, dissolved (µg/L) (01035)	Copper, dissolved (µg/L) (01040)	Lead, dissolved (μg/L) (01049)
R-001	MB-1	<23.5	<17.9	<1.7	<2.5	<0.5	<1.7	<5.8	<3.8	<4.2	3.8
R-002	MB-2	<23.5	<17.9	<1.7	2.5e	<.5	<1.7	<5.8	<3.8	<4.2	
R-003	MB-3	<23.5	<17.9	<1.7	<2.5	\$	<1.7	<5.8	<3.8	10.8	 ∴
R-004	MB-4	<23.5	<17.9	<1.7	<2.5	\$	<1.7	<5.8	<3.8	<4.2	 1
R-005	MB-5	<23.5	<17.9	<1.7	<2.5	\$>	<1.7	<5.8	<3.8	<4.2	1.9
R-009	MB-6	52.1e	<17.9	2.5	<2.5	\$	<1.7	<5.8	<3.8	<4.2	
R-013	MB-7	390	<17.9	<1.7	4e	<.5	<1.7	<5.8	<3.8	<4.2	!:!>
Sample number	Sample name	Mercury, dissolved (μg/L) (71890)	Nickel, dissolved (µg/L) (01065)	Selenium, dissolved (µg/L) (01145)	Silver, dissolved (µg/L) (01075)	Thallium, dissolved (μg/L) (01057)	Vanadium, dissolved (μg/L) (01085)	Zinc, dissolved (µg/L) (01090)	Cyanide, dissolved (µg/L) (00723)		
R-001	MB-1	<0.1e	<6.1	<2.3	<3.8	<1.1	<3.3	<3.4	<10		
R-002	MB-2	<.1e	<6.1	<2.3	<3.8	2.8	<3.3	<3.4	<10		
R-003	MB-3	<.1e	<6.1	<2.3	<3.8	1.1	<3.3	<3.4	<10		
R-004	MB-4	<.1e	<6.1	<2.3	<3.8	<1.1	<3.3	<3.4	<10		
R-005	MB-5	Ÿ	<6.1	<2.3	<3.8	<1.1	<3.3	<3.4	<10		
R-009	MB-6	v.	<6.1	<2.3	<3.8	<1.1>	<3.3	<3.4	<10		
R-013	MB-7	×	<6.1	<2.3	<3.8	1.4	<3.3	<3.4	<10		

[µg/L, microgram per liter; <, less than; e, estimated value; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes] **Table 5.** Concentrations of target volatile organic compounds in sampling-device blanks and trip blanks collected in the Calumet Region, Indiana and Illinois, June 1993

Sample	Sample	Chloro- methane (μg/L) (30201)	Bromo- methane (μg/L) (30202)	Vinyl chloride, total (µg/L) (39175)	Chloro- ethane, total (μg/L) (34311)	Methylene chloride, total (μg/L) (34423)	Acetone, total (μg/L) (81552)	Carbon di- sulfide, total (µg/L) (77041)	1,1-Di- chloro- ethylene, total (µg/L) (34501)	1,1-Di- chloro- ethane, total (µg/L) (34496)	1,2-Di- chloro- ethene, total (μg/L) (45617)	Chloroform, total (μg/L) (32106)
R-001	MB1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-002	MB2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-003	MB3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-004	MB4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-005	MB5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-006	TB1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-007	TB2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-008	TB3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-009	MB6	<10	<10	<10	<10	<10	4e	<10	<10	<10	<10	<10
R-010	TB4	<10	<10	<10	<10	<10	<10	<10	410	~<10	<10	<10
R-011	TB5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-012	TB6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-013	MB7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-014	TB7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-015	TB8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-016	TB9	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-017	TB10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-018	TB11	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-019	TB12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-020	TB15	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10

Table 5. Concentrations of target volatile organic compounds in sampling-device blanks and trip blanks collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Sample	1,2-Di- chloro- ethane (μg/L) (32103)	Methylethylethylketone, total (μg/L) (81595)	1,1,1-Tri- chloro- ethane, total (µg/L) (34506)	Carbon tetra- chloride, total (μg/L) (32102)	Di-chloro- bromo- methane, total (µg/L) (32101)	1,2-Di- chloro- propane, total (µg/L) (34541)	cis-1,3-Di- chloro- propene, total (µg/L) (34704)	Tri- chloro- ethlyene, total (µg/L) (39180)	Chloro-di- bromo- methane, total (µg/L) (32105)	1,1,2-Tri- chloro- ethane, total (µg/L) (34511)	Benzene, total (μg/L) (34030)
R-001	MB1	<10	Se	<10	<10	01>	<10	<10	<10	<10	<10	<10
R-002	MB2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-003	MB3	<10	5e	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-004	MB4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-005	MB5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-006	TB1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-007	TB2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-008	TB3	<10	01>	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-009	MB6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-010	TB4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-011	TB5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-012	TB6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-013	MB7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-014	TB7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ol>
R-015	TB8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-016	TB9	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-017	TB10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-018	TB11	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-019	TB12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-020	TB15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 5. Concentrations of target volatile organic compounds in sampling-device blanks and trip blanks collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Xylene, total (µg/L) (81551)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Styrene, total (µg/L) (77128)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ethyl- benzene, total (µg/L) (34371)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chloro- benzene, total (µg/L) (34301)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Toluene, total (µg/L) (34010)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,1,2,2- Tetra- chloro- ethane, total (μg/L) (34516)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Tetra- chloro- ethylene, total (µg/L) (34475)	<10	<10	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2-Hexa- none, total (μg/L) (77103)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methyl- isobutyl ketone, total (μg/L) (78133)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Bromo- form, total (μg/L) (32104)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
trans-1,3- Di- chloro- propane, total (µg/L) (34699)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sample	MB1	MB2	MB3	MB4	MB5	TB1	TB2	TB3	MB6	TB4	TB5	TB9	MB7	TB7	TB8	TB9	TB10	TB11	TB12	TB15
Sample	R-001	R-002	R-003	R-004	R-005	R-006	R-007	R-008	R-009	R-010	R-011	R-012	R-013	R-014	R-015	R-016	R-017	R-018	R-019	R-020

⁷⁸ Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 6. Concentrations of target semivolatile organic compounds in sampling-device blanks collected in the Calumet Region, Indiana and Illinois, June 1993 [µg/L, microgram per liter; <, less than; e, estimated; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

Sample	Sample	Phenols, total (μg/L) (32730)	Bis(2- Chloro- ethyl) ether, total (μg/L) (34273)	2-phenol, (µg/L) (34586)	1,3-Di- chloro- benzene (μg/L) (34566)	1,4-Di- chloro- benzene (µg/L) (34571)	o-Chloro- benzene (µg/L) (34536)	Ortho cresol, total (μg/L) (77152)	2-2'- oxybis 1-Chloro- propane (µg/L) ()	Para cresol, total (μg/L) (77146)	N-Nitro sodi-N- propyl- amine, total (µg/L) (34428)	Hexa- chloro- ethane, total (μg/L) (34396)	Nitro- benzene, total (μg/L) (34447)	lso- phorone, total (μg/L) (34408)	Nitro- phenol, total (µg/L) (34591)
R-001	MB01	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-002	MB02	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-003	MB03	2e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.6e	<10
R-004	MB04	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-005	MB05	<10	<10	<10	<10	.5e	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-009	MB06	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-013	MB07	<10	<10	0 >	<10	<10	<10	<10	<10	<10	<10	<10	ol>	VI 0	<10
Sample	Sample	2,4-Di- methyl- phenol, total (μg/L) (34606)	Bis(2- chloro- ethoxy) methane, total (μg/L) (34278)	2,4-Di- chloro- phenol, total (µg/L) (34601)	1,2,4-Tri- chloro- benzene, total (μg/L) (34551)	Naphth- alene, total (μg/L) (34696)	4-Chloro- aniline (µg/L) (30343)	Hexa- chloro- buta- diene (µg/L) (34391)	Para- chloro- meta cresol, total (μg/L) (34452)	2-Methyl naph- thalene, total (µg/L)	Hexa- chloro- cyclo- pent- adiene, total (µg/L) (34386)	2,4,6-Tri- chloro- phenol, total (µg/L) (34621)	2,4,5-Tri- chloro- phenol, total (µg/L) (77687)	2-Chloro- naph- thalene, total (µg/L)	2-Nitro- aniline (µg/L) (30195)
R-001	MB01	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
R-002	MB02	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
R-003	MB03	<10	<10	<10	<10	<10	<10	<10	<10	01>	<10	<10	<25	<10	<25
R-004	MB04	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
R-005	MB05	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
R-009	MB06	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
R-013	MB07	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25

Table 6. Concentrations of target semivolatile organic compounds in sampling-device blanks collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2- Methyl 4,6-Di- nitro- phenol (µg/L) (30204)	<25	<25	<25	<25	<25	<25	<25	Benzo(a) anth- racene, total (µg/L) (34526)	×10 ×10	<10	<10	<10	<10	<10
4- Nitro- aniline (µg/L) (30196)	<25	<25	<25	<25	<25	<25	<25	3-3' - Di- chloro- benzi- dine, total (µg/L) (34631)	017	<10	<10	<10	<10	<10
Fluor- ene, total (µg/L) (34381)	<10	<10	<10	<10	<10	<10	<10	N-Butyl 3 benzyl c phthal- ate, total (µg/L) (34292) (<10 <10	<10	<10	<10	<10	<10
4- Chloro- phenyl phenyl ether, total (μg/L)	<10	<10	<10	<10	<10	<10	<10	N b b b Pyrene, total (μg/L) ((34469) ((3	0!> ~10	<10	<10	<10	<10	<10
Diethyl phthal- ate, total (µg/L) (34336)	0.5e	<10	<10	<10	<10	<10	<10							
2,4-Dinitronitro toluene, total (µg/L) (34611)	<10	<10	<10	<10	<10	<10	<10	tyl Fluor- hal- Fluor- e, anthene tal total //L) (µg/L)	2		<10	<10	<10	.7e <10
Di- benzo- furan, total (µg/L) (81302)	<10	<10	<10	<10	<10	<10	<10	phu bu to		<10	<10	<10	<10	
4-Nitro- phenol, total (μg/L) (34646)	<25	425	<25	425	<25	<25	<25	Carba- zole (µg/L) ()	01>	<10	<10	<10	<10	<10
2,4-Di- nitro- phenol, p total (µg/L) (34616)	<25	25	<25	<25	<25	<25	<25	Anthra- cene, total (μg/L) (34220)	01>	<10	<10	<10	<10	<10
Ace- 2 naphth- 1 ene, p total (μg/L) (<10	<10	<10	<10	<10	<10	<10	Phenan- threne, total (µg/L) (34461)	01>	<10	<10	<10	<10	<10
3-Nitro na niline, t total t (μg/L) ((<25	<25	<25	. 25	<25	. <25	<25	Penta- chloro- phenol, total (µg/L) (39032)	\$ 55	425	<25	<25	<25	<25
_								Hexa- chloro- benzene, total (µg/L) (39700)	01>	<10	<10	<10	<10	<10
- 2,6-Di- h- nitro- e, toluene, il total L) (μg/L) 00) (34626)) <10) <10) <10	0 <10	0 <10	0 <10	0 <10	4- Bromo- phenyl phenyl ether, total (µg/L) (34636)	01>	<10	<10	<10	<10	<10
// Ace- - napth- ylene, total) (#g/L)	<10	<10	<10	<10	<10	<10	<10	N- Nitro- Sodi- phenyl- amine, total (µg/L) ((34433) ((2)			<10	<10	<10	<10
Di- methyl phthal- ate, total (µg/L) (34341)	<10	<10	<10	10 < 10	<10	<10	7 <10							
Sample	MB01	MB02	MB03	MB04	MB05	MB06	MB07	Sample	MB02	MB03	MB04	MB05	MB06	MB07
Sample	R-001	R-002	R-003	R-004	R-005	R-009	R-013	Sample	R-002	R-003	R-004	R-005	R-009	R-013

Table 6. Concentrations of target semivolatile organic compounds in sampling-device blanks collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

			Bis(2-							
			ethyl- hexyl)	Di-n- octyl	Benzo(b)	Benzo(k)		Indeno (1,2,3-	1,2,5,6 Dibenz-	
		Chry-	phthal-	phthal-	fluoran-	fluoran-	Benzo(a)	(ps	anthra-	Benzo(g,h,i)
		sene, total	ate, total	ate, total	thene, total	thene, total	pyrene, total	pyrene, total	cene, total	perylene, total
Sample number	Sample name	(μg/L) (34320)	(μg/L) (39100)	(μg/L) (34596)	(μg/L) (34230)	(μg/L) (34242)	(μg/L) (34247)	(μg/L) (34403)	(μg/L) (34556)	(μg/L) (34521)
R-001	MB01	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-002	MB02	<10	le	<10	<10	<10	<10	<10	<10	<10
R-003	MB03	<10	.9e	<10	<10	<10	<10	<10	<10	<10
R-004	MB04	<10	2e	<10	<10	<10	<10	<10	<10	<10
R-005	MB05	<10	.7e	<10	<10	<10	<10	<10	<10	<10
R-009	MB06	<10	<10	<10	<10	<10	<10	<10	<10	<10
R-013	MB07	<10	<10	<10	<10	<10	<10	<10	<10	<10

¹No available WATSTORE or STORET parameter code for this compound.

Table 7. Concentrations of compounds containing pesticides or polychlorinated biphenyls in sampling-device blanks collected in the Calumet Region, Indiana and Illinois, June 1993 [μg/L, microgram per liter; <, less than; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

		Alpha benzene hexa-	Beta benzene hexa-	Delta benzene hexa-	-	Hepta-					Ö.	, p, q, q
Sample number	Sample name	cnioride, total (μg/L) (39337)	chioride, total (μg/L) (39338)	cnioride, total (μg/L) (34259)	Lindane, total (µg/L) (39340)	total (μg/L) (39410)	total (µg/L) (39330)	total (μg/L) (πg/2)		sunan i, total (μg/L) (34361)	erdrill, total (μg/L) (39380)	total (μg/L) (39320)
R-001	MB-1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.1	<0.1
R-002	MB-2	<.05	<.05	<.05	<.05	<.05	<.05	<.05		<.05	<u>.</u>	<u>.</u> .
R-003	MB-3	<.05	<.05	<.05	<.05	<.05	<:05			<.05	<u>.</u> .	<u>.</u>
R-004	MB-4	<.05	<.05	<.05	<:05	<.05	<.05	<.05		<.05		<u>.</u> .
R-005	MB-5	<.05	<.05	<.05	<.05	<.05	<.05	<:05		<.05	<u>.</u> .	·
R-009	MB-6	<.05	<.05	<.05	<:05	<.05	<.05	<:05		<.05	\ 	<u>.</u> .
R-013	MB-7	<.05	<.05	<.05	<.05	<.05	<.05	<.05		<.05	- .	<u>``</u>
			Ę C	è	Endo-	è	Meth-	Fodrin	Endrin	Alpha-		Tok
		Endrin,	sulfan II,	000	sulfate,	, 100 TO	chlor,	ketone,	hyde,	dane,		
		total	total	total	total	total	total	total	total	total		i
Sample	Sample	(39390)	(µg/L) (34356)	(µg/L) (39310)	(µg/L) (82623)	(#8/L) (39300)	(\mathred{\mathred{\mathreal}{\ma	(Hg/L) (78008)	(µg/L) (82622)	(⊭g/L) (39348)	(µg/L) (39810)	(µg/L) (39400)
R-001	MB-1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.05	<0.05	\$>
R-002	MB-2	< <u>.</u> 1	∵	<u>-</u>	×.1	×.	<.5	\ <u>`</u>	<u>.</u> .	<.05	<.05	
R-003	MB-3	<u>.</u>	\ <u></u>	~	~	~ ~	<.5	~	~;	<.05	<.05	
R-004	MB-4	<u>.</u> .	~	~ ~	<u>'</u>	<u>.</u> ;	<.5	- ;	Ÿ	<.05	<.05	\$
R-005	MB-5	×.	- ;	~	<u>.</u> ;	~	<.5	~	- .	<.05	<.05	\$
R-009	MB-6	~	~	~	~	<u>.</u> ;	<.5	<u>.</u> .	<u>~</u> .	<.05	<.05	\$
R-013	MB-7	~	-	~;	<u>~</u>	<u>.</u> .	<.5	7	<u>.</u> .	<.05	<.05	\$

Table 7. Concentrations of compounds containing pesticides or polychlorinated biphenyls in sampling-device blanks collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Aroclor 1016 PCB, total	Aroclor 1221 PCB, total	Aroclor 1232 PCB, total	Aroclor 1242 PCB, total	Aroclor 1248 PCB, total	Aroclor 1254 PCB, total	Aroclor 1260 PCB, total
Sample	Sample	(µg/L) (34671)	(µg/L) (34988)	(µg/L) (39492)	(µg/L) (39496)	(μg/L) (39500)	(µg/L) (39504)	(µg/L) (39508)
R-001	MB-1	▽	<2	 -	⊽	⊽	⊽	⊽
R-002	MB-2	~	\$	$\overline{\vee}$	$\overline{\vee}$	7	$\overline{\lor}$	$\overline{\lor}$
R-003	MB-3	$\overline{\lor}$	\$	~	$\overline{\vee}$	~	$\overline{\lor}$	⊽
R-004	MB-4	$\overline{\vee}$?	~	$\overline{\lor}$	~	~	⊽
R-005	MB-5	~	\$	~	$\overline{\lor}$	7	$\overline{\lor}$	$\overline{\vee}$
R-009	MB-6	$\overline{\vee}$	\$	⊽	~	~	\ <u>\</u>	⊽
R-013	MB-7	>	<2	< < < < < < < < < <	 	<	□	 -

Table 8. Water-quality properties and concentrations of common ions in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993 [mg/L, milligram per liter; CaCO₃, calcium carbonate; µg/L, microgram per liter; N, nitrogen; e, estimated; <, less than; --, no data; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

Sample	Sample name	Acidity (mg/L as CaCO ₃) (00435)	Calcium, dissolved (µg/L) (91051)	Magnesium, dissolved (µg/L) (91052)	Sodium, dissolved (µg/L) (91053)	Potassium, dissolved (µg/L) (91054)	Alkalinity (mg/L as CaCO ₃)	Sulfate, dissolved (mg/L) (00945)	Chloride, dissolved (mg/L) (00940)
S-001 D-001	E10	0 0	128,000 126,000	42,200 41,500	10,300	5,310	422e 424e	28e 35e	6.8
S-011 D-011	BH8 BH8	0 0	5 0,200 48,900	20,600 20,100	35,800 35,000	3,120 3,220	275e 263e	8e 12e	16.6e 12.7
S-021 D-021	225 225	0 0	46,800 46,300	8,630 8,540	5,060 4,980	11,200	131e 121e	31e 30e	6.2e 5.2e
S-031 D-031 S-036	BH31 BH31 BH31	000	175,000 177,000 163,000	<46 <46 <46	56,800 57,400 56,000	79,700 80,600 76,500	305e 336e 284e	98e 98e 100e	40.5e 40.4e 34.1e
S-041 D-041	235-45 235-45	0	53,700 54,200	8,940 9,020	4,260 4,260	555 782	163e 	27.3e 	4.6
S-051 D-051	115 115	1 0	186,000 184,000	301,000	221,000 221,000	30,500 30,900	 810e	 700e	324
S-071 D-071	BH28 BH28	0	226,000	44,200 43,400	239,000	8,330 8,070	298e 302e	180e 130e	391 428
S-081 D-081	BH23 BH23	0	111,000	46,000 48,400	23,900 20,100	1,680	228e 227e	66e 30.3e	148 159e
S-082 D-082	232-45 232-45	0	78,200 78,200	16,400 16,400	7,660	1,970 2,080	237e 237	<\$e <>	21.4 22.4
S-091 D-091	BH18S BH18S	0 0	168,000	5,410 6,020	62,300 64,300	24,300 24,700	24.9e 50.7	440e 438	78.1
S-101 D-101	MW-1 MW-1	0 0	128,000 123,000	28,100 27,300	14,100 13,500	4,920 4,480	203 267e	180	11.3
S-111 D-111	BH11 BH11	0 0	109,000	16,400 17,600	5,870 6,400	2,130 2,200	255e 261e	54 60	9.16e 9.0e
S-121 D-121	WS7 WS7	0 0	514,000 516,000	22,800 23,000	16,900 16,800	61,400 61,100	74.6e 73.6e	1,570 1,450	8.43e 8.7e

Table 8. Water-quality properties and concentrations of common ions in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

23 18.5e 47 9.5e	523 542 322 306 172 181 776 782
	.,
6.5e 3.0e	
8.5e 6.5e	2.
6.5e 6.5e 27.5	
0 .	<3.0
. 0	 93.0
75	12.75
0	5.0
0	14.0 14.0
0	54.0 34.0
9.0 7.0e	9.0
3.5e 8.0e	13.5e 8.0e
5.0e	2,310 5.0e 2,360 10.0e

Table 9. Concentrations of trace elements and cyanide in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993 [μg/L, microgram per liter; <, less than; e, estimated value; -, no data; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

						- 1						
L. 1∆ 1. 1∆ 1. 1∆	<u>^</u> ∴ ∴	4.1 3.1	2: 1.5 -1: 4:1	1.6	1.3e <.8e	< 1.4 4.1	1.7	<1.1 1.3e	1.9e 1.8	6.5e 7.1e	3.7e 1.3e	<1.1e
<4.2 <4.2	<4.2 <4.2 <4.2	<4.2 <4.2	4,2,2,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	<4.2 <4.2	<u>4</u> 4	4 4 4	4 4	^	<u>4</u> 4	<u> 4</u> 4	18.9	4 4
<3.8 <3.8	\$. \$. \$.	& & & & & & & & & & & & & & & & & & &	& & & & & & & & & & & & & & & & & & &	63.8 8.8 8.8	3 <2.5	<2.5 <2.5	<2.5 <2.5	<2.5 <2.5	<2.5 <2.5	<2.5 <2.5	<2.5 <2.5	2.5 2.5
\$.5.8 \$.5.8	\$5.8 \$5.8	<.5.8 \$5.8	\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$5.8 \$.58	\$5.1 \$5.1	\$5.1	\$5.1 \$5.1		\$5.1	\$.1 \$.1	\$.1 \$.1	\$5.1
<1.7 <1.7	<1.7 <1.7	<1.7 <1.7	<pre><!----></pre>	<1.7 <1.7	<1.5 <1.5	Section</td <td><1.5 <1.5</td> <td>< 1.5 < 1.5 < 1.5</td> <td>< 1.5 < 1.5 < 1.5</td> <td>< ! \$ < ! \$ <</td> <td>△√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√<</td> <td><u> </u></td>	<1.5 <1.5	< 1.5 < 1.5 < 1.5	< 1.5 < 1.5 < 1.5	< ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ < ! \$ <	△√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√<	<u> </u>
<0.5 <.5	\$ \$	\$ \$	\$ \$ \$ \$ \$ \$.77e <.5	<a>1.2 <a>1.2 <a>1.2 <a>1.2 <a>1.2 <a>1.2 <a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1.2<a>1	4.2	<pre><1.2 <1.2 <1.2</pre>	<1.2 <1.2	<pre><1.2 <1.2</pre>	<1.2 <1.2	<1.2 <1.2	< 1.2 < 1.2
47.1 49.6	128 126	16.1 16.1	134 137 129	35.6 35.6	232e 262e	138	26.3 20	75.3 77.9	57.1 55.4	121 116	47.8 49	25.1 30.2
<1.7 <1.7	22.6 22.6	1.9	1.8 3.7 2.1	8.7	292 294	<2.7 <2.7	7.2> 7.2>	15.3	<1.7	3.3	<1.7 1.9	<1.7
<17.9 <17.9	<17.9	<17.9 <17.9	<17.9 <17.9 <17.9	<17.9 <17.9	<15.7 <15.7	<15.7 <15.7	<15.7 <15.7	<15.7 <15.7	<15.7 <15.7	<15.7 <15.7	<15.7 <15.7	<15.7 <15.7
<23.5 <23.5	<23.5 <23.5	<23.5 <23.5	508 525 446	74.9e 34.6e	<20.9 <20.9	21.3	23.0 20.9	<20.9 <20.9	50.3 <20.9	<20.9 <20.9	233 102	<20.9 <20.9
E-10 E-10	BH-8 BH-8	225 225	BH-31 BH-31 BH-31	235-45 235-45	115 115	BH-28 BH-28	BH-23 BH-23	232-45 232-45	BH-18S BH-18S	MW-1 MW-1	BH-11 BH-11	WS7 WS7
S-001 D-001	S-011 D-011	S-021 D-021	S-031 D-031 S-036	S-041 D-041	S-051 D-051	S-071 D-071	S-081 D-081	S-082 D-082	S-091 D-091	S-101 D-101	S-111 D-111	S-121 D-121
	E-10 <23.5 <17.9 <1.7 47.1 <0.5 <1.7 <5.8 <3.8 <4.2	E-10 <23.5	E-10 <23.5 <17.9 <1.7	E-10 <23.5	E-10 <23.5	E-10 <23.5	E-10 \$\chi_{3.5}\$ \$\chi_{1.7}\$ \$\chi_{1.7}\$	E-10 <a> <a> <a> <a><!--</th--><th>E-10 <23.5</th> <17.9	E-10 <23.5	E10		

Table 9. Concentrations of trace elements and cyanide in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Mercury, dissolved (µg/L) (71890)	Nickel, dissolved (µg/L) (01065)	Selenium, dissolved (µg/L) (01145)	Silver, dissolved (µg/L) (01075)	Thallium, dissolved (μg/L) (01057)	Vanadlum, dissolved (µg/L) (01085)	Zinc, dissolved (µg/L) (01090)	Cyanide, dissolved (μg/L) (00723)
S-001	E-10	0.15e	<6.1	<2.3	<3.8	2.3e	3.7	<3.4	<u> 01></u>
D-001	E-10	<.1c	<6.1	<2.3	<3.8	2.0c	<3.3	<3.4	0I>
S-011	BH-8	<.le	<6.1	<2.3	<3.8	<u> - - - - - - - - - - - - - </u>	<3.3	<3.4	<10
D-011	BH-8	<.1e	<6.1	<2.3	<3.8	<1.1	3.8	<3.4	<10
S-021	225	.12e	<6.1	42.3	<3.8	<u>△</u>	<3.3	3.5e	<10
D-021	225	<.1c	<6.1	<2.3	<3.8	2.8e	<3.3	5.3e	<10
S-031	BH-31	.54e	6.1	3.8	<3.8	<1.1	12.4	<3.4	<10
D-031 S-036	BH-31 BH-31	.28e .2e	6.1 6.1	3.7 4.9	& & .8 .8	2.7e 2.1e	13	4.6.4.6.4.6.	0
S-041 D-041	235-45 235-45	⊽ ⊽	<6.1 <6.1	2.3	<3.8 <3.8	2.2e 2.2e	<3.3 <3.3	<3.4 <3.4	<10 <10
S-051 D-051	115 115		<4.7 <4.7	\$.\$. \$.\$	\$ \$	1 1	8.1	3.8	21.9e 21.8e
S-071 D-071	BH-28 BH-28	- -	12 14.5	<3.7e <3.7e	\$ \$	i !	42.6 42.6	<3.7 <3.7	<10e
S-081 D-081	BH-23 BH-23		<4.7 <4.7	<3.7e <3.7e	2 2	1 1	<2.6 <2.6	<3.7 <3.7	<10e
S-082 D-082	232-45 232-45	.11	7.4.7 7.4.7	2.3	\$ \$	2.5e 1.2e	<2.6 <2.6	<3.7 <3.7	<10 <10
S-091 D-091	BH-18S BH-18S	<.1 .22e	<4.7 <4.7	3.4e <2.3	\$ \$	<u></u> ∴ ∴	52.7 51.6	<3.7 <3.7	14 15.5
S-101 D-101	MW-1 MW-1	.18e .45e	<4.7 <4.7	2.3	22	<u></u> ∴	3.6	<3.7 <3.7	<10 <10
S-111 D-111	BH-11 BH-11	.12e .13e	<4.7 <4.7	4 4 4.	\$ \$	∴ 4:	42.6 42.6	40.2 25.6	<10 <10 <10
S-121	WS7	.14e	7.4>	6, 6	۷ ۷	2.7	9.79	<3.7	01>

Table 10. Concentrations of target volatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993 [µg/L, microgram per liter; <, less than; e, estimated value; --, no data; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

								1	ä	ä	
		Chloro-	Bromo-	Vinyl chloride.	Chloro- ethane.	Methylene chloride.	Acetone.	carboli, di- sulfide,	chloro- ethvlene.	chloro- ethane.	1,2-Di- chloro-
Sample	Well	methane (µg/L)	methane (µg/L)	total (µg/L) (39175)	total (µg/L) (34311)	total (µg/L) (34423)	total (µg/L) (81552)	total (µg/L) (77041)	total (μg/L) (34501)	total (µg/L) (34496)	ethene (µg/L) (45617)
	F10	(1000)	(T)	<10	(10) (10)	<10	01>	>10	01>	<u> </u>	01>
	E10	<10	<10	<10	<10	<10	<10	<10	<10	<10	01>
	BH8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	BH8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	225	0 <u>1</u> >	<10	0 	<10	<10	<10	<10	<10	<10	<10
	225	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-031	BH31	<10	<10	<10	<10	<10	19	<10	<10	<10	<10
	BH31	<10	<10	<10	<10	<10	8e	<10	<10	<10	<10
S-036	BH31	<10	<10	<10	<10	<10	16	<10	01	<10	<10
S-041	235-45	0 7	V V	V \ 7	V 10	V 70	0 7	0 0	0 0	0 0	0 0
	C4-CC7	07/	27	2) /	> 7	2	7	27	27	27
	115	VIO	~I0 ~I0	۱ ۱	01×	<10	0 V	0[>	0 -	0[>	<u>0</u>
100-7											
S-071 D-071	BH28 BH28	~10	^10	~ 10	410 < 10	~10 <10	√ 0 ∨ 10 ∨	~10			

88 Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 10. Concentrations of target volatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

damea	Moil	Chloroform, total	1,2-Di- chloro- ethane	Methyl- ethyl- ketone, total	1,1,1-Tri- chloro- ethane, total	Carbon tetra- chloride, total	Di-chloro- bromo- methane, total	1,2-Di- chloro- propane, total	cis-1,3- Di-chloro- propene, total	Tri- chloro- ethlyene, total	Chloro- di-bromo- methane, total
number	name	(32106)	(32103)	(49/L) (81595)	(49/L) (34506)	(32102))	(Hg/L) (32101)	(µg/L) (34541)	(49/L) (34704)	(1997L) (39180)	(µg/∟) (32105)
S-001	E10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
D-001	E10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-011	BH8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
D-011	BH8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-021	225	<10	<10	<10	<10	<10	V10	V10	V10	<10	V10
D-021	225	<10	0I>	<10	<10	<10	<10	<10	0I>	01 <10	<10 <10
0.	101101	7	, ,	7	7	7	7	7	5	7	,
5-051	15H2	7.0	710	07.	07.5	710	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~10 ~10	\	017	017
S-036	BH31	017	017	07.7	077	07	07.0	017	0 T V	01×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
) •) !	·	•)) •	?	2	2.
S-041	235-45		<10	<10	<10	<10	<10	<10	<10	<10	<10
D-041	235-45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-051	115	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
D-051	115	1	ł	ł	1	i	i	ŀ	ŀ	!	l
S-071	BH28	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
D-071	BH28	01>	01>	01>	0I>	01>	<10	<10	<10	<10	<10
S-081 D-081	BH23 BH23	<pre><</pre>	<10 <10	< 0 < 10 < 10 < 10 < 10 < 10 < 10 < 10	<pre><!-- <! The state</td--><td><10 <10</td><td><10 <10 <10</td><td><10</td><td><pre><!-- <! The state</td--><td><10</td><td><10</td></pre></td></pre>	<10 <10	<10 <10 <10	<10	<pre><!-- <! The state</td--><td><10</td><td><10</td></pre>	<10	<10
S-082 D-082	232-45 232-45	The state of the state of</td <td><10 <10 <10</td> <td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td> <td><10 <10</td> <td><10</td> <td><10 <10</td> <td><10 <10 <10</td> <td><10 <10</td> <td>0 < 10 0 < 10</td> <td><10</td>	<10 <10 <10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<10 <10	<10	<10 <10	<10 <10 <10	<10 <10	0 < 10 0 < 10	<10
S-091 D-091	BH18S BH18S	0</td <td><10 <10</td> <td><pre><</pre></td> <td><10 <10</td> <td><10 <10</td> <td><10 <10</td> <td>\$\frac{10}{10}\$</td> <td><10 <10</td> <td><10 <10</td> <td><10</td>	<10 <10	<pre><</pre>	<10 <10	<10 <10	<10 <10	\$\frac{10}{10}\$	<10 <10	<10 <10	<10
S-101 D-101	MW-1 MW-1	<10 <10 <10	<pre>< 10 < 10 </pre>	0 0 0 10 0 10	<10 <10	<10 <10	<10 <10	< 10 < 10	<10 <10	√ 10 10 10	<10 <10
S-111 D-111	BH11 BH11	< 10 < 10	0 V V V V V V V V V V V V V V V V V V V	< 0 < 10 < 10	<10	<10	<10 <10	\(\lambda \) \(\	< 10 < 10	0 0 √1 0 √1 0 √1	<10
S-121 D-121	WS7 WS7	<10	0 0 0 10 0 10	<pre><!-- <! The state</td--><td><10</td><td><10 <10</td><td><10</td><td><pre><!-- <! The state of the s</td--><td><10 <10</td><td>0 0 √ 0 √</td><td><10</td></pre></td></pre>	<10	<10 <10	<10	<pre><!-- <! The state of the s</td--><td><10 <10</td><td>0 0 √ 0 √</td><td><10</td></pre>	<10 <10	0 0 √ 0 √	<10

Appendix 2: Quality-Assurance Data 89

Table 10. Concentrations of target volatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Xylene, total (μg/L) (81551)	<10 <10	<10 <10	0 0 0	0 <10 <10 <10	01× 10	<10	<10 <10	0 0	0 V V 0 V	0 10 10 10	010 <10	~10 ~10	0 \
Styrene, total (μg/L) (77128)	0 <u>1</u> >	0 < 10 < 10	0 √ 0 √ 0	<pre><10 <10 <10 </pre>	<10 <10	<10	<10 <10		0 √ 0 0	0 √ 0 √ 0 √	<pre></pre> <pre><</pre>	\$\frac{10}{10}\$	√10 √10
Ethyl- benzene, total (μg/L) (34371)	<10 <10 <10	<10	< 10 < 10 < 10	01 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	< 10 < 10 < 10	<10	< 10 < 10	<pre><</pre>	< 10 < 10	< 10 < 10	<10 <10	<10 <10	< 10 < 10 < 10
Chloro- benzene, total (µg/L) (34301)	01> <10	< 10 < 10	< 10 < 10	<pre></pre>	<10 <10 <10	1 410	0 	<10 <10	<10 <10	< 10 < 10	410 0 ≤ 10	0 \	<10 <10
Toluene, total (µg/L) (34010)	~10 ~10	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<10 <10										

Table 11. Concentrations of target semivolatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993 [µg/L, microgram per liter; <, less than; e, estimated; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

			Bis(2-								N-Nitro-	:	
			Chloro-		1.2.D.	1 A.D.		C the	2-2' - 2-2yhis	,	Sodi-N-	Hexa-	Nite
		Phenols,	ethy)	2-phenol,	chloro-	chloro-	o-Chloro-	cresol,	oxybis 1-Chloro-	cresol,	amine,	ethane,	benzene,
	Well	total (µg/L) (32730)	total (μg/L) (34273)	total (μg/L) (34586)	benzene (µg/L) (34566)	benzene (μg/L) (34571)	benzene (µg/L) (34536)	total (μg/L) (77152)	propane (µg/L) ()	total (μg/L) (77146)	total (μg/L) (34428)	total (µg/L) (34396)	total (μg/L) (34447)
S-001 E1 D-001 E1	E10 E10	01> <10	V 010 ∨10	<10 <10 <10	<10 <10	01>	<10 <10 <10	<10 <10	×10 ×10	<10 <10	V 010 ∨10	<10 <10	

Table 11. Concentrations of target semivolatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

			2.4-Dj-	Bis(2- chloro-	2.4-Dj-					Para- chloro-	
lso- 2	CA F	2-Nitro-	methyl-	ethoxy)	chloro-	1,2,4-Tri-	Naph-	4-Chloro-	Hexa-	meta	2-Methyl
	_	total	total	total	total	benzene	total	aniline	butadiene	total	thalene
(µg/L) (34408)	_	(µg/L) (34591)	(µg/L) (34606)	(μg/L) (34278)	(µg/L) (34601)	(µg/L) (34551)	(μg/L) (34696)	(μg/L) (30343)	(μg/L) (34391)	(μg/L) (34452)	(µg/L) (30194)
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

92 Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 11. Concentrations of target semivolatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2,4-Di-nitro- phenol, total (μg/L) (34616)	\$25 \$25	<25 <25	<25 <25	25 25 25 25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
Acenaphthene total (µg/L) (34205)	<10 <10 <10	<pre>< 10</pre>	<10 <10 <10	0 0 0 0 0 V	<pre><10 <10</pre>	<10 <10	<pre><10 <10</pre>	<10 <10	<10 <10	<10 <10	<pre><10 <10</pre>	<10 <10 <10	<10 <10
3-Nitro aniline, total (µg/L) (78300)	\$25 \$25	<25 <25	<25 <25	\$ \$ \$	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
2,6-Di- nitro- toluene, total (μg/L) (34626)	<10 <10 <10	<pre>< 10 < 10 </pre>	0	0 0 0 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<pre>< < 0.0</pre>	0 V V V V V V V V V V V V V V V V V V V	\$\frac{10}{10}\$	<10 <10	<10 <10	<10 <10	<pre><10 <10</pre>	<10 <10
Acenapth- napth- ylene, total (μg/L)	<10 <10	<10	<10	0 0 0	<10 <10	<10	<10	<10	<10	< 0.0 < 1.0 < 1.0	<10	<10	010
Di-methyl phthalate, total (µg/L) (34341)	<10 <10 <10	<10 <10	<10	<pre>< < 0.0</pre> <pre>< < 0.0</pre> <pre>< < 0.0</pre> <pre></pre> <pre>< < 0.0</pre> <	<10 <10 <10	<10 <10	<10 <10	<10 <10	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	< 0 < 10 < 10	0 0 0	<pre>< 10 < 10 < 10</pre>
2-Nitro- aniline (μg/L) (30195)	<25 <25	<25 <25	<25 <25	\$ \$ \$ \$	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	425 425	25 25
2-Chloro- naph- thalene, total (μg/L) (34581)	<10	<10	<10 <10	<pre></pre>	<10 <10	<10	<10 <10	<10	<10	<10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>< 10</pre>
2,4,5-Tri- chloro- phenol, total (μg/L) (77687)	425 425 425	<25 <25	<25 <25	\$ \$ \$ \$	25 25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
2,4,6-Tri- chloro- phenol, total (µg/L) (34621)	<10 <10 <10	<10 <10	<pre><10 <10</pre>	0 0 0	<pre>< 0 </pre>	<10	<pre>< 10 < 10 </pre>	0	\$\frac{10}{10}\$	\$\frac{10}{10}\$	\$\frac{10}{10}\$	<pre>< 10</pre>	<10 <10
Hexa- chloro- cyclo- pent- adiene, total (µg/L) (34386)	<10 <10	<10	<10 <10	0 0 0 0 0 0 0 0 0	<10 <10	<10	<pre><10 <10</pre>	<10 <10	<10	<10	<pre>< 10 < 10 </pre>	< 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 <	< 10 < 10
Well	E10 E10	BH8 BH8	225 225	BH31 BH31 BH31	235-45 235-45	115 115	BH28 BH28	BH23 BH23	232-45 232-45	BH18S BH18S	MW-1 MW-1	BH11 BH11	WS7 WS7
Sample	S-001 D-001	S-011 D-011	S-021 D-021	S-031 D-031 S-036	S-041 D-041	S-051 D-051	S-071 D-071	S-081 D-081	S-082 D-082	S-091 D-091	S-101 D-101	S-111 D-111	S-121 D-121

Table 11. Concentrations of target semivolatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Penta- chloro- phenol, total (µg/L) (39032)	<25 <25	<25 <25	<25 <25	<25 <25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	\$25	<25 <25	<25 <25	<25 <25	
Hexa- chloro- benzene, total (µg/L) (39700)	01> <10	<pre><!-- <! The state of the s</th--><th>01V V10</th><th><pre><!-- <! The state of the s</th--><th>< 010 < 10</th><th>0 V</th><th>01></th><th>0 < 10 10</th><th>0 </th><th>01× 01×</th><th>01> <10 <10</th><th>01× 01×</th><th>< 10 < 10</th></pre></th></pre>	01V V10	<pre><!-- <! The state of the s</th--><th>< 010 < 10</th><th>0 V</th><th>01></th><th>0 < 10 10</th><th>0 </th><th>01× 01×</th><th>01> <10 <10</th><th>01× 01×</th><th>< 10 < 10</th></pre>	< 010 < 10	0 V	01>	0 < 10 10	0 	01× 01×	01> <10 <10	01× 01×	< 10 < 10	
4-Bromo- phenyl phenyl ether, total (μg/L) (34636)	<10	<10 <10	<10 <10	0 0 0 0 0 0	\(\lambda \) \(\	<10	< 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0	< 10 < 10	< 10 < 10 < 10	01× 01×	01 >	0 V V V V V V V V V V V V V V V V V V V	~10 ~10 ~10	
N-Nitro- sodi- phenyl- amine, total (µg/L) (34433)	<10 <10	<10	<10 <10	01 <10 <10	<pre><10 <10 </pre>	<10	<10 <10	<10	<pre><10 <10</pre>	< 0 < 10 < 10	<a href="https://www.new.new.new.new.new.new.new.new.new.</th><th><a href=" https:="" th="" www.new.new.new.new.new.new.new.new.new.<=""><th>010 010</th>	010 010		
2-Methyl 4,6-Di- nitro- phenol (μg/L) (30204)	<25 <25	<25 <25	<25 <25	\$ \$ \$	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	25 25	<25 <25	<25 <25	
4-Nitro- aniline (μg/L) (30196)	<25 <25	<25 <25	<25 <25	<25 <25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	
Fluorene, total (μg/L) (34381)	01>	<10 <10	<10 <10	<pre><!-- <! The state</th--><th><10 <10</th><th><10</th><th><10 <10</th><th><10</th><th><10 <10</th><th><10</th><th>< 10 < 10 < 10</th><th>0 0 10 0 10</th><th>< 10 < 10 < 10</th></pre>	<10 <10	<10	<10 <10	<10	<10 <10	<10	< 10 < 10 < 10	0 0 10 0 10	< 10 < 10 < 10	
4-Chlorophenyl phenyl ether, total (μg/L) (34641)	<10 <10	<10 <10	<10	<pre>< 10 < 10 < 10 </pre>	<10 <10	<10	<10 <10	<a href="https://www.new.new.new.new.new.new.new.new.new.</th><th>0
∨ 0
∨ 10</th><th><10
<10
<10</th><th>0

 </th><th>0

 </th><th>01></th></tr><tr><th>Diethyl
phthalate,
total
(μg/L)
(34336)</th><th><10</th><th><10
<10</th><th><10
<10</th><th>0 0 0</th><th>< 10</p> < 10</p></th><th><10</th><th><a href=" https:="" th="" www.new.new.new.new.new.new.new.new.new.<=""><th><10</th><th><!-- old</th--><th>< 10 < 10</th><th>0 0</th><th>0 < 10 < 10 < 10 </th><th><10 .5e</th></th>	<10	old</th <th>< 10 < 10</th> <th>0 0</th> <th>0 < 10 < 10 < 10 </th> <th><10 .5e</th>	< 10 < 10	0 0	0 < 10 < 10 < 10	<10 .5e
2,4-Di- nitro- toluene, total (μg/L) (34611)	<10 <10	0 V V	01V V10	0	0 0	< 10 < 10 < 10	<10	<10 <10 <10	<10 <10 <10	<10 <10	<pre><!-- <! The state of the s</th--><th><10 <10</th><th><10 <10</th></pre>	<10 <10	<10 <10	
Di-benzo- furan, total (μg/L) (81302)	<10 <10	0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <	\$\left\) \left\] \l	01 > 01 > 01 > 01 > 01 > 01 > 01 > 01 >	< 10 < 10	< 10 < 10	<10	01 < 10 < 10	<10	<10 <10	<pre><!-- <! The state of the</th--><th><10 <10</th><th><10 <10</th></pre>	<10 <10	<10 <10	
4-Nitro- phenol, total (μg/L) (34646)	<25 <25	<25 <25	<25 <25	\$25 \$25 \$25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	
Well	E10 E10	BH8 BH8	225 225	BH31 BH31 BH31	235-45 235-45	115	BH28 BH28	BH23 BH23	232-45 232-45	BH18S BH18S	MW-1 MW-1	BH11 BH11	WS7 WS7	
Sample	S-001 D-001	S-011 D-011	S-021 D-021	S-031 D-031 S-036	S-041 D-041	S-051 D-051	S-071 D-071	S-081 D-081	S-082 D-082	S-091 D-091	S-101 D-101	S-111 D-111	S-121 D-121	

94 Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 11. Concentrations of target semivolatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Bis(2- ethyl-	hexyl) Chrysene, phthalate,			<10 10e	<10 <10	<10 <10		710		<10 %	<10 <10	<10 <10	<10 3e	V	<10 2e <10 <10 <10	<10 <10 <10 <10 <10	<10 3e <10 <10	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	
	Benzo(a) anthracene, C		(34526)	<10	<10	<10	<10	017	<10	<10	01>	<10	<10	<10	<10 <10	<10 <10	<10	<10	<10	<10	
3,3-Di-	chloro- benzidine,	total (μg/L)	(34631)	<10	<10	<10	<10	V10	<10	<10	01; 	<10	<10	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	
N-Butyl	benzyl phthalate,	total (µg/L)	(34292)	<10	<10	<10	<10	017	<10	<10	017	<10	<10	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	7
	Pyrene,	total (µg/L)	(34469)	<10	<10	<10	<10	017	01>	V10	01> <10	<10	<10	<10	<10 <10	<10 <10	<10	<10 <10	<10 <10	<10 <10	7
	Fluor- anthene,	total (μg/L)	(34376)	<10	<10	<10	<10	V10	<10	δ) 	<10	<10	<10	<10 <10	<10 <10	<10	<10 <10	< 10 < 10	<10 <10 <10	<10
3	Di-N-butyl phthalate,	total (µg/L)	(39110)	<10	<10	<10	<10	012	<10	<10	01>	<10	<10	le	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10
		Carbazole (µg/L)	()	<10	<10	<10	<10	V10	<10	<10	01>	<10	<10	<10	<10 <10	<10 <10	<10 <10	<10	<10 <10	<10	710
	Anthracene,	total (µg/L)	(34220)	<10	<10	<10	<10	Q10	01>	<10	0 	<10	<10	<10	<10 <10	< 0	<10 <10		<10 <10 <10	<10 <10 <10	<10
	Phenan- threne,	total (µg/L)	(34461)	<10	<10	<10	<10	912	<10	<10	017	<10	<10	<10	<10 <10	<10 <10	.6e <10	<10 <10	<10 <10	<10 <10	<10
		Well	name	E10	E10	BH8	BH8	325	225	внзі	BH31	BH31	235-45	235-45	115 115	BH28 BH28	BH23 BH23	232-45 232-45	BH18S BH18S	MW-1 MW-1	BHII
		Sample	number	S-001	D-001	S-011	D-011	100.3	D-021	S-031	D-031	S-036	S-041	D-041	S-051 D-051	S-071 D-071	S-081 D-081	S-082 D-082	S-091 D-091	S-101 D-101	S-111

Table 11. Concentrations of target semivolatile organic compounds in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Contact		fluor-	fluor-	Benzo(a)	cd)	1,2,3,0- Dibenz- anthracene	Benzo(g,h,i)
E10 E10 E10 BH8 BH8 BH8 BH31 S25 S25 S25 S35-45 S35	total (µg/L) (34596)	total (µg/L) (34230)	total (μg/L) (34242)	pyrene, total (μg/L) (34247)	total total (μg/L) (34403)	total (µg/L) (34556)	total (μg/L) (34521)
BH8 BH8 C225 C25 C25 C25 C25 C25 C25 C25 C25 C2	<10 <10	<10 <10	<10 <10	<10 <10	<10	<10	<10 <10 <10
225 225 225 225 225 225 235 245 235 245 235 245 232 245 232 245 232 245 232 245 246 247 248 248 248 248 248 248 248 248 248 248	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<pre><!-- <! The state</td--></pre>
BH31 BH31 BH31 C35-45 C35-45 C115 C115 C115 BH28 C232-45 C32-45 C33-45 C	<10	<pre>< 10 < 10</pre>	<10 <10	<10 <10	<10 <10	<10 <10	0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <
235-45 235-45 115 115 115 115 115 115 115 115 115 1	0 0 0	< 10 < 10 < 10 < 10	<pre><10 <10 <10 </pre>	<10 <10 <10	<10 <10 <10	<10 <10 <10	0 0 0
BH28 BH28 BH23 BH23 BH23 C32-45 C32-45 C32-45 CMW-1 MW-1 CMW-1	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	< 10 < 10
BH28 BH28 BH23 BH23 C32-45 C32-45 CMW-1 CMW-1 CBH11 CBH11	<10 <10	<10 <10	<10	<10	<10 <10	<10 <10	<10 <10
BH23	<10	<10	<10 <10	<10 -	<10	<10	<10 <10
232-45	<10	<pre>< 10 <10</pre>	<10 <10	<10	<10 <10	<10 <10	0 \ 0 \ 0 \
BH18S BH18S MW-1 MW-1	1e <10	< 10 < 10	<10	<10	<10 <10	<10 <10	<10 <10
MW-1 MW-1 BH11	<10 ,	<10 <10	< 10 < 10	<10	<10 <10	<10 <10	<10 <10 <10
BHII	<10 <10	<10 <10	\$\frac{10}{10}\$	< 10 < 10	<10 <10	<10	< 10 < 10 < 10
DILID	<10 <10	<10 <10	\$\frac{10}{10}\$	√ 10 10 10	<10 <10	< 10 < 10	0 0 0 0 0
S-121 WS7 <10 D-121 WS7 <10	<10 <10	.5e <10	<10	<10	<10 <10	<10	<10 <10

¹No available WATSTORE or STORET parameter code for this compound.

Table 12. Concentrations of compounds containing pesticides or polychlorinated biphenyls in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993

[μg/L, microgram per liter; <, less than; e, estimated; p, more than 25 percent difference between the two gas chromatograph columns used for analysis, lower value is reported; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

		Alpha	Beta	Delta				1 1		
		penzene hexa-	penzene hexa-	benzene hexa-		Hepta-		chlor	Endo-	
		chloride, total	chloride, total	chloride, total	Lindane, total	chlor,	Aldrin, total	epoxide,	sulfan I, total	Dieldrin, total
Sample	Well	(µg/L)	(μg/L)	(μg/L) (34259)	(µg/L)	(μg/L)	(μg/L) (39330)	(μg/L) (39420)	(μg/L) (34361)	(µg/L)
S-001	E10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1
D-001	E10	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	- -
S-011	BH8	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>-</u>
D-011	BH8	<:05	<.05	<.05	<.05	<:05	<.05	<.05	<.05	- V
S-021	225	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~
D-021	225	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	- .
S-031	BH31	<.05	<.05	<.05	<.05	<.05	<:05	<.05	<.05	
D-031	BH31	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	
S-036	BH31	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	.
S-041	235-45	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	
D-041	235-45	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	
S-051	115	<.05	<:05	<.05	<.05	<.05	<:05	<.05	<.05	<u>~</u>
D-051	115	<.05	<.05	<.05	<.05	<.05	<:05	<.05	<.05	
S-071	BH28	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	
D-071	BH28	<.05	<:05	<.05	<.05	<.05	<.05	<.05	<.05	∵
S-081	BH23	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>.</u> .
D-081	BH23	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>^</u> .
S-082	232-45	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>
D-082	232-45	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~; ~
S-091 D-091	BH18S BH18S	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	₹ ₹
S-101 D-101	MW-1 MW-1	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	₹ 7
S-111 D-111	BH11 BH11	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	0.50.5	~ ~
S-121 D-121	WS7 WS7	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	< 0.5< 0.5	~ ~

Table 12. Concentrations of compounds containing pesticides or polychlorinated biphenyls in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		p,p'DDE, total	Endrin, total	Endo- sulfan II, total	p,p'DDD, total	Endo- sulfan sulfate, total	p,p' DDT, total	Meth- oxychlor, total	Endrin ketone, total	Endrin alde- hyde, total
Sample number	Well	(μg/L) (39320)	(µg/L) (39390)	(µg/L) (34356)	(μg/L) (39310)	(µg/L) (82623)	(µg/L) (39300)	(μg/L) (39480)	(µg/L) (78008)	(μg/L) (82622)
S-001 D-001	E10 E10	<0.1 <.1	<0.1 <.1	<0.1 <.1	<0.1 <.1	<0.1 <.1	<0.1 <.1	<0.5 <.5	<0.1 <.1	<0.1 <.1
S-011	BH8	<u>~</u>	V	- V		-		\$	-	
D-011	BH8		. ∵	~	. 	<u>.</u>	-; •	<.5	. 	·
S-021	225	7	∵	7	∵	<u>~</u>	-	<.5		~
D-021	225	∵	7	⊽	7	-	- ;	\$	7	<u>.</u> ;
S-031	BH31	- ;	7	~	7	<u>^</u>	 '	<.5	~	~
D-031 S-036	BH31 BH31	⊽ ⊽	⊽ ⊽	⊽ ⊽	77	⊽ ⊽	⊽ ⊽	\$ \$ \$	∵ ∵	⊽ ⊽
S-041	235-45			7 ∵			∵	<. 5.		
D-041	235-45		- .	∵	∵	∵	. .	<.5	<u>.</u> .	
S-051 D-051	115	∵ ∨	77	77	~ ∵	77	<.1 .013e	< < < < <	7 7	∵ ⊽
S-071 D-071	BH28 BH28		⊽ ⊽	₹ ₹	₹ \	<.1 .01e	<.1 .02e,p	\$ \$	7 V	<.1 .018e,p
S-081 D-081	BH23 BH23	~ ~	∵ ∵	⊽ ⊽	77	.019e <.1	.016e,p <.1	\$ \$ \$	⊽ ⊽	.033e,p <.1
S-082 D-082	232-45 232-45	-	∵ ∵	- -	~ ~	∵ ∵	⊽ ⊽	\$ < < < < < < < < < < < < < < < < < < <	7 7	~ ~
S-091 D-091	BH18S BH18S	∵ ∵	⊽⊽	- -	77	⊽ ⊽	~ ~	\$ \$	7 7	∵ ∨
S-101 D-101	MW-1 MW-1	- - -	77	.01e	~ ~	⊽ ⊽	⊽⊽	\$ < 5	~ ~	- -
S-111 D-111	BH11 BH11	⊽ ⊽	~ ~	<.1 .01e.p		<.1 .01e	- -	<.5 <.5	- -	<,1 .01e,p
S-121 D-121	WS7 WS7	⊽ ⊽	77	77	77	⊽ ⊽	77	\$ \$	₹ ₹	- - -

⁹⁸ Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 12. Concentrations of compounds containing pesticides or polychlorinated biphenyls in duplicate samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Alpha- Chlor- dane, total	Gamma- Chlor- dane, total	Tox- aphene, total	Aroclor 1016 PCB, total	Aroclor 1221 PCB, total	Aroclor 1232 PCB, total	Aroclor 1242 PCB, total	Aroclor 1248 PCB, total	Aroclor 1254 PCB, total	Aroclor 1260 PCB, total
Sample	Well	(μg/L) (39348)	(μ g /L) (39810)	(µg/L) (39400)	(μg/L) (34671)	(µg/L) (34988)	(μg/L) (39492)	(μg/L) (39496)	(µg/L) (39500)	(μg/L) (39504)	(µg/L) (39508)
S-001 D-001	E10 E10	<0.05 <.05	<0.05 <.05	\$ \$	▽ ▽	22	⊽ ⊽	$\nabla \nabla$	⊽ ⊽		∇ ∇
S-011 D-011	BH8 BH8	<.05 <.05	<.05 <.05	\$\$	$\overline{\lor}$ $\overline{\lor}$	88	⊽ ⊽	⊽ ⊽	⊽ ⊽	⊽ ⊽	⊽ ⊽
S-021 D-021	225 225	<.05 <.05	<.05 <.05	\$ \$	⊽ ⊽	77	⊽ ⊽	⊽ ⊽	⊽ ⊽	⊽ ⊽	⊽ ⊽
S-031 D-031 S-036	BH31 BH31 BH31	0.50.50.05	< 0.05< 0.05< 0.05	\$ \$ \$	$\triangledown \triangledown \nabla$	888	$\nabla \nabla \nabla$	$\nabla \nabla \nabla$	$\overline{\lor} \overline{\lor} \overline{\lor}$	$\overline{\lor} \overline{\lor} \overline{\lor}$	$\nabla \nabla \nabla$
S-041 D-041	235-45 235-45	<.05 <.05	<.05 <.05	\$ \$	$\overline{\lor}$	88	⊽ ⊽	⊽ ⊽	⊽ ⊽	∇	∇
S-051 D-051	115 115	<.05 <.05	<.05 <.05	\$ \$	∇	88	⊽ ⊽	$\overline{\lor}$	$\overline{\lor}$	⊽ ⊽	⊽⊽
S-071 D-071	BH28 BH28	<.05 <.05	<.05 <.05	\$ \$	⊽ ⊽	88	∇	∇	∇	⊽ ⊽	⊽⊽
S-081 D-081	BH23 BH23	<.05 <.05	<.05 <.05	\$ \$	⊽⊽	88	∇	⊽⊽	⊽ ⊽	⊽ ⊽	∇
S-082 D-082	232-45 232-45	<.05 <.05	<.05 <.05	\$ \$	⊽ ⊽	\$ \$	⊽⊽	∇	⊽⊽	$\overline{\lor}$	∇
S-091 D-091	BH18S BH18S	<.05 <.05	<.05 <.05	2 2	⊽ ⊽	\$\$	⊽⊽	∇	⊽⊽	⊽⊽	$\overline{\lor}$
S-101 D-101	MW-1 MW-1	<.05 <.05	<.05 <.05	22	⊽ ⊽	\$\$	⊽⊽	⊽⊽	⊽⊽	$\overline{\lor}$	⊽⊽
S-111 D-111	BH11 BH11	<.05 <.05	<.05 <.05	22	⊽ ⊽	\$\$	⊽⊽	⊽⊽	⊽⊽	⊽⊽	∇
S-121 D-121	WS7 WS7	<.05 <.05	<.05	\$ \$	⊽ ⊽	\$ \$	⊽⊽	⊽⊽	⊽⊽	⊽⊽	⊽⊽

Appendix 2: Quality-Assurance Data 99

APPENDIX 3

WATER-QUALITY DATA

Table 14. Date and time of sample and onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993 [°C, degree Celsius; mv, millivolt; mg/L, milligram per liter; µS/cm, microsiemens per centimeter at 25°C; --, not measured; time is in military notation; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

Sample	Well	Date	Time	Temperature (°C) (00010)	pH (units) (00400)	Eh (mv) (00090)	Dissolved oxygen (mg/L) (00300)	Specific conductance (µS/cm) (00094)	Water-surface altitude
S-001	E10	6/14	1300	13.6	6.9	-64	1	943	583.2
S-002	BH21	6/14	1530	15.8	8.9	-38	8.0	1,560	ł
S-003	230-58	6/15	1515	12.8	7.2	-111	2	1,220	595.6
S-004	E20	6/14	1520	13.4	8.9	-50	ŀ	721	1
S-005	234-142	6/14	1830	13.9	7.8	-164	ι	719	604.0
900-S	D40	6/14	1705	12.1	6.2	-85	ι	842	583.7
S-007	WPI	6/15	0923	13.9	7.4	02	1	432	ſ
8-008	10	6/15	1112	16.2	8.0	-169	1.5	200	1
S-009	G-1	91/9	1035	14.4	7.5	-167	Τ.	164	604.9
S-010	230-128	6/15	1632	12.8	7.8	-171	.2	1,740	595.6
S-011	BH8	6/15	0360	11.9	7.5	-259	9:	537	1
S-012	BH22	6/15	1110	10.9	7.0	-265	9:	1,620	1
S-013	BH33	6/15	1225	12.8	7.2			1,150	!
S-014	E2	6/15	0920	12.2	ŀ	136	4.6	702	583.5
S-015	DI	6/15	1325	13.2	ŀ	-134	4.2	538	583.7
S-016	WP2	6/15	1010	10.5	7.8	-65	ŀ	828	;
S-017	230-24	6/15	1544	12.2	0.9	68	∞.	354	598.0
S-018	D11	6/15	1145	12.4	1	-118		3,480	584.7
S-019	D10	6/15	1246	13.6	ŀ	-110	7	1,300	584.7
S-020	D-5A	91/9	1252	10.7	6.1	09-	.2	204	0.709
S-021	225	6/15	1006	12.7	7.4	-163	-:	318	623.7
S-022	D20	6/15	1515	13.5	ŀ	-104	£.	2,070	585.0
S-023	D21	6/15	1635	13.3	ł	-120		1,060	582.4
S-024	E6	91/9	0931	12.1	7.0	-134	۲.	1,340	583.9
S-025	$E7^a$	91/9	1045	15.0	11.4	-159	ł	1,420	584.2

Table 14. Date and time of sample and onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Date	Time	Temperature (°C) (00010)	pH (units) (00400)	Eh (mv) (00090)	Dissolved oxygen (mg/L) (00300)	Specific conductance (µS/cm) (00094)	Water-surface altitude
S-026	24	91/9	1557	11.4	8.9	-78	0.3	654	607.2
S-027	25	91/9	1702	11.3	7.3	-139	-:	445	603.4
S-028	W-1A	91/9	1835	12.0	0.9	5	4	1,170	604.2
S-029	BH30	91/9	0060	13.2	6.9	120	3.6	1,250	;
S-030	IT	91/9	1218	15.4	8.0	27	1.4	469	ł
S-032	11	6/15	1533	14.3	9.9	<i>L</i> 9-	2.8	4,450	;
S-033	113	91/9	1423	14.5	9.4	-218	εċ	4,830	ŀ
S-034	112	91/9	1535	14.1	9.7	2	1.4	3,040	;
S-035	114	6/16	0060	11.9	9.7	55	6:	3,680	I
S-036	BH31	91/9	1315	13.4	12.1	-287	Τ.	2,450	ł
S-037	D25	91/9	1442	11.6	7.1	-131	4.	2,630	586.7
S-038	BH29	91/9	1030	16.7	6.5	124	1	2,630	i
S-039	BH26	91/9	1140	20.5	6.7	111	2.8	1,700	į
S-040	237-45	6/17	0912	14.5	7.0	-75	Τ.	251	601.4
S-041	235-45	6/17	1354	14.0	7.3	-136	:	344	603.3
S-042	MW-5	6/17	1053	13.5	7.2	-29	5.	239	0.109
S-043	MW-15 ^a	6/17	0945	16.2	6.9	-54	1	421	ţ
S-044	$A3^a$	6/17	1820	19.6	7.7	-134	ı	251	ł
S-045	El	91/9	1537	13.6	7.2	-88	ε;	533	579.1
S-046	A 2	6/17	1120	14.4	7.4	-157	-:	832	587.8
S-047	BH27	91/9	1520	18.0	8.9	77	1	1,800	1
S-048	B 2	21/9	1420	20.8	11.7	-446	l	4,030	581.4
S-049	Ala	21/9	1610	16.7	7.5	82	ł	1,600	587.3
S-050	A4	21/9	1722	12.0	7.3	-148	:	428	589.1
S-051	115	91/9	1015	14.9	7.4	-105	4.	2,850	ì
S-052	244-125	21/9	1831	13.4	8.1	-202	-:	462	587.0
S-053	244-65	6/17	1636	12.8	7.2	-132	1.	069	587.3

Table 14. Date and time of sample and onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Date	Time	Temperature (°C) (00010)	pH (units) (00400)	Eh (mv) (00090)	oxygen (mg/L) (00300)	conductance (μS/cm) (00094)	Water-surface altitude
S-054	ВН6	6/17	1025	18.6	6.9	-174	1.6	744	1
S-055	BH4D	6/17	1232	16.3	6.7	-152	1.6	616	ł
S-056	BH4S	6/17	1315	16.0	7.0	-18	s.	873	1
S-057	BH24	6/17	1455	13.4	7.0	15	1.9	1,880	ŀ
S-058	IP	91/9	1342	14.1	8.0	80	5.	330	ł
S-059	116	91/9	1542	16.6	7.4	-56	4.	2,330	1
090-S	121	6/18	0934	13.9	7.5	80	ł	700	1
S-061	BH7I	6/21	1350	15.2	7.0	-34	9:	1,380	ŀ
S-062	BH9S	6/18	0650	12.4	7.0	-108	6:	1,620	ł
S-063	BH15 ^a	6/18	0630	12.9	7.3	-127	2.0	430	583.4
S-064	110	6/21	1242	14.8	0.6	-170	1.4	2,070	ŀ
S-065	BH7S	6/21	1318	12.7	8.9	-125	1.0	2,390	;
990-S	BH7D	6/21	1635	17.1	8.0	-180	<i>L</i> :	449	!
290-S	61	6/21	1347	13.4	7.2	99-	2.6	5,980	
890-S	18	6/22	1100	17.2	7.5	-49	4.2	5,720	1
690-S	B7	6/21	1345	13.8	7.3	-17	9.1	452	589.5
S-070	BS	6/21	1450	12.3	7.3	-172	.2	2,250	586.3
S-071	BH28	6/21	1900	15.7	8.9	-41	1.6	2,090	ł
S-072	D67	6/21	1422	17.4	6.4	1117	1.8	260	588.5
S-073	89Q	6/21	1501	11.9	7.4	-173	-:	524	587.6
S-074	C19	6/21	1613	14.1	6.5	06-	6.	507	590.4
S-075	C25	6/22	0920	16.4	6.4	-32	к;	246	598.1
920-S	C18	6/22	1035	13.4	6.9	-84	:	1,370	593.8
S-077	B10	6/22	1128	11.7	8.0	36	6.1	260	895.8
S-078	B3	6/22	1325	12.8	6.3	-179	.2	397	585.8
8-079	A20	6/22	1430	17.8	5.3	68-	ь:	1,410	596.6
S-080	W-3 ^a	6/22	0954	19.0	6.3	-26	;	247	8.709

104 Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 14. Date and time of sample and onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Date	Time	Temperature (°C) (00010)	pH (units) (00400)	Eh (mv) (00090)	Dissolved oxygen (mg/L) (00300)	Specific conductance (µS/cm) (00094)	Water-surface altitude
S-081	BH23	6/22	1245	13.3	8.9	91	3.1	1,050	1
S-082	232-45	6/22	1150	12.1	7.1	-156	0.	542	587.1
S-083	105	6/22	1442	11.2	7.7	-198	0.	793	9.909
S-084	901	6/22	1529	10.3	7.4	52	6.1	1,190	606.3
S-085	E3	6/22	1708	11.9	7.9	-183	.2	469	583.7
980-S	13	6/22	1520	15.0	7.9	126	9:	580	ŀ
S-087	122	6/22	1355	14.9	7.3	133	1:1	106	!
S-088	B8	6/21	1305	12.4	7.0	-149	т.	1,050	589.5
680-S	BHID	6/22	1015	18.0	12.1	-264	2.2	3,380	l
060-S	BHIS	6/22	1115	17.2	8.9	83	3.8	1,520	I
S-091	BH18S	6/23	1045	14.2	9.4	134	1.2	1,100	I
S-092	BH2	6/22	1550	14.4	9.9	9	3.5	3,050	ı
S-093	BH25	6/22	1715	15.4	8.9	9-	1.6	610	I
S-094	BH14	6/23	0842	13.0	ŀ	41	∞.	714	605.1
S-095	BH19	6/23	0950	14.1	6.9	107	∞.	937	592.2
960-S	BH13	6/23	1051	14.1	7.0	27	٠ċ:	2,110	I
S-097	BH12	6/23	1220	15.1	7.3	107	4.6	604	590.4
8-00-S	BH20	6/23	1418	13.8	7.3	-18	2.1	939	588.5
8-099	BH17	6/23	1540	14.8	7.3	7	1.9	006	589.5
S-100	D45	6/23	0838	12.1	7.1	31	4.	645	582.6
S-101	MW-I	6/24	1522	14.6	7.3	-164	т:	818	582.0
S-102	12	6/22	1810	14.9	7.6	25	1.1	761	ŀ
S-103	BH5S	6/23	1507	14.4	7.0	1117	1.2	261	i
S-104	င္သ	6/23	1213	11.7	7.3	-172	Τ:	982	582.5
S-105	C4	6/23	1241	13.4	7.4	-46	6.3	201	582.5
S-106	CI	6/23	1320	16.0	7.5	-78	1.8	186	585.0
S-107	E5	6/23	1456	15.8	6.9	09-	εż	1,300	582.8

Table 14. Date and time of sample and onsite measurements of selected properties of ground water in the Calumet Region, Indiana and Illinois, June 1993— Continued

Sample	Well			Temperature (°C)	pH (units)	(mv)	Dissolved oxygen (ma/L)	Specific conductance (uS/cm)	Water-surface
number	name	Date	Time	(00010)	(00400)	(06000)	(00000)	(00094)	altitude
S-108	BHSD	6/23	1130	1	1	1	1	ŀ	-
S-109	BH18I	6/23	1238	15.9	8.7	79	1.2	192	;
S-110	BH32	6/23	1815	15.0	8.4	124	∞.	2,020	i
S-111	BH11	6/23	1005	14.1	7.1	82	1.1	723	ŀ
S-112	BH18D	6/23	1215	16.2	9.1	87	5:	290	;
S-113	D70	6/23	1609	18.3	8.9	7	£;	367	601.3
S-114	BH16D	6/23	1705	14.9	8.0	109	4.	343	ł
S-115	BH16S	6/23	1600	12.8	8.9	147	9.	859	ŀ
S-116	D75	6/23	1653	19.2	7.4	94	2.5	499	597.2
S-117	C12	6/24	1040	10.5	6.9	-134	-:	1,260	583.4
S-118	LK13	6/24	1324	10.8	7.0	-151	0.	934	591.7
S-119	120a	6/24	1802	1	ł	1	1	l	I
S-120	WS9	6/24	1115	17.8	7.2	66	1	1,440	
S-121	WS7	6/24	1225	15.4	7.5	-81	s.	1,980	!
S-122	WS2	6/24	1422	17.6	7.2	80	∞i	794	ı
S-123	FIL01	6/25	1320	14.7	9.8	-120	ł	290	1
S-124	WSS	6/24	1526	15.3	9.9	-72	9.	1,150	ŀ
S-125	$FILO4^a$	6/25	1035	ı	ł	1	ŀ	ŀ	ŀ
S-126	FILOS	6/24	1533	17.8	7.2	25	1.2	3,630	1
S-127	FILO2	6/25	1345	17.7	8.9	159	ŀ	582	!
S-128	FILO6	87/9	1335	14.2	9.2	ı	٠ċ	1,370	1
S-129	C2	6/28	1400	16.2	11.4	-221	.2	1,740	585.1

^aSample bailed.

[mg/L, milligram per liter; CaCO₃, calcium carbonate; µg/L, microgram per liter; N, nitrogen; e, estimated; <, less than; --, no data; numbers in parentheses in column header are U.S. Geological Table 16. Water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993 Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

Table 16. Water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Acidity, (mg/L as CaCO ₃)	Calcium, dis- solved (μg/L) (91051)	Magne- sium, dis- solved (μg/L) (91052)	Sodium, dis- solved (µg/L) (91053)	Potas- sium, dis- solved (µg/L)	Alka- linity (mg/L as CaCO ₃)	Sulfate, dis- dis- solved (mg/L) (00945)	Chloride, dis- solved (mg/L) (00940)	Silica, dis- solved (mg/L) (00955)	Dis- solved solids (mg/L) (70301)	Sus- pended solids (mg/L) (70299)	Ammonia (mg/L as N) (00610)	Iron, dis- solved (μg/L) (01046)	Manga- nese, dis- solved (μg/L) (01056)	Total organic carbon (mg/L) (00680)
S-025	E7	0e	122,000	179	83,000	10,800	146e	192e	81.1e	15.2e	589	114	1.20e	13.9	3.2	6.4e
S-026	24	0	000,09	26,400	30,100	2,650	145e	51e	82.7	12.4	355	15.5	.30e	5,550	226	2.9e
S-027	25	0	54,200	20,500	11,300	871	216e	<5e	12.2	29.7	262	<3.0	1.10e	2,560	137	11.6
S-028	W-1A	0e	12,700	5,030	1,140	515	53.5e	86e	12.3e	12.2e	95	<3.0	.90	5,260	1,230	16.3
S-029	BH30	0	123,000	59,700	24,600	5,010	231e	186e	16.1e	24.0	829	38.5	i	196	377	3.5e
S-030	II	0	9,180	5,000	85,600	3,070	164e	<5e	36.5e	10.1	257	158	.Ie	37.3	4.9	5.0e
S-032	Ξ	0e	368,000	143,000	1,080,000	12,500	706e	38e	2,008e	29.8e	5,030	234e	10.2e	58,400	2,460	51.0e
S-033	113	0	36,300	31,500	1,240,000	135,000	694e	154e	2,044e	6.61	3,868	47.5	6.77	288	77.2	115
S-034	112	0	192,000	211,000	645,000	25,100	662e	1,160e	514e	21.8	3,392	58.0	1.5	966	176	35.0
S-035	114	0	565,000	241,000	321,000	38,400	527e	2,070e	806e	30.8	4,390e	194	ŀ	26,400	1,770	38.1e
S-036	BH31	0e	163,000	<46	56,000	76,500	284e	100e	34.1e	10.8e	704	27.5	3.5e	846	style="background-color: blue;" 8. I>	7.9e
S-037	D25	0	435,000	24,600	90,400	102,000	217e	1,220e	152e	25.3	2,144e	214	ł	20,600	1,250	24.4e
S-038	BH29	0	470,000	221,000	35,700	7,830	480e	1,520e	32.4e	25.0	2,268e	20.5	 	34.8	1,750	9.8e
S-039	BH26	0	198,000	84,800	51,400	7,580	237e	742e	58.6e	26.5	1,299	37.5	.30	45.6	589	4.7c
S-040	237-45	0	196,000	45,300	253,000	3,850	257e	130e	894 c	24.4	1,664	35.5	2.10e	2,120	930	4.0c
S-041	235-45	0	53,700	8,940	4,260	555	163e	27.3e	4.6	18.4	224	<3.0	.30e	2,030	86.7	6.9e
S-042	MW-5	0	27,000	14,400	1,110e	592	95.5e	20e	1.4	10.5	139	<3.0	<.10	72.0	749	4.8e
S-043	MW-15	0	48,500	20,000	3,390e	879	115e	78e	6.7	9.11	256	<3.0	.10e	4,520	630	10.1
S-044	A3	0	162,000	68,400	136,000	5,870	344e	560e	145	27	1,186	30.5	90.3	1,430	1,540	14.0
S-045	E1	0	76,700	17,100	18,600	1,690	197e	400e	16.5	11.1	306	<3.0	<.10	726	437	6.4e
S-046	A2	0	123,000	23,300	19,800	4,560	149e	<5e	28.4	14.3	547	4.5	<.10	2,710	400	4.7e
S-047	BH27	0	218,000	107,000	48,700	6,350	304e	776e	18.3	19.0	1,367	10.0	<.10	34.0	609	3.3e
S-048	B 2	0	404,000	123	75,200	161,000	400e	470e	377e	3.2	1,930	267	4.00	13.5	4.3	15.1

Table 16. Water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

9) (4971) (497			Acidity, (mg/L	Calcium, dis-	Magne- sium, dis-	Sodium, dis-	Potas- sium, dis-	Alka- linity (mg/L	Sulfate, dis-	Chloride, dis-	Silica, dis-	Dis- solved	Sus- pended	Ammonia (mg/l	lron, dis-	Manga- nese, dis-	Total organic
A1 0 116,000 23,000 192,000 9770 235 138 187 35.3 964 108 A4 0 59,300 16,400 22,000 1,910 172e 22e 5.2 9.6 238 4.0 115 - 186,000 30,100 22,100 21,100 22,100 3.0 1.2 - - - - - 4.0 1.2 -	imple mber	Well	CaCO ₃) (00435)	(μg/L) (91051)	μg/L) (91052)	(μg/L) (91053)	(μg/L) (91054)	CaCO ₃) (00417)	(mg/L) (00945)	(mg/L) (00940)	(mg/L) (00955)	(mg/L) (70301)	(mg/L) (70299)	as N) (00610)		(μg/L) (01056)	(mg/L) (00680)
A4 0 59,300 16,400 2970 1,910 172e 22e 5.2 9.6 238 4.0 115 - 18,600 301,000 21,1000 30,500 -	049	A1	0	116,000	23,000	192,000	9,770	253e	138e	187	35.3	964	108	<0.10	1	28.1	8.6e
115 186,000 301,000 201,200 30,500 20,200 30,500 20,21,000 30,500 20,200 6,830 84,300e 1,230 213e < <td>050</td> <td>A4</td> <td>0</td> <td>59,300</td> <td>16,400</td> <td>2,970</td> <td>1,910</td> <td>172e</td> <td>22e</td> <td>5.2</td> <td>9.6</td> <td>238</td> <td>4.0</td> <td><.10</td> <td></td> <td>547</td> <td>5.3e</td>	050	A4	0	59,300	16,400	2,970	1,910	172e	22e	5.2	9.6	238	4.0	<.10		547	5.3e
244-125 0 20,200 6,887 84,300e 1,230 213e <5e 185e 20,20 20,70 20,70 20,70 20,70 20,70 20,70 20,70 20,70 21,000 35,600 21,000 43,10 20,70 <td>051</td> <td>115</td> <td>ł</td> <td>186,000</td> <td>301,000</td> <td>221,000</td> <td>30,500</td> <td>1</td> <td>1</td> <td>1</td> <td>ł</td> <td>ı</td> <td>1</td> <td>;</td> <td></td> <td>462</td> <td>1</td>	051	115	ł	186,000	301,000	221,000	30,500	1	1	1	ł	ı	1	;		462	1
244-65 6e 96,300 27,300 18,600e 2010 289e 26e 30.7e 10.9e 36.0e 26.4e 30.7e 30.7e 30.7e 10.9e 30.7e 244.6e 30.7e 40.7e 37.6e 40.9e 36.0e 21.1e 13.6e 40.10 28.6e 21.1e 13.6e 21.1e	052	244-125	0	20,200	6,850	84,300e		213e	<5e	18.5e	13.1	566	28.5	.40	295	22.1	4.2e
BH6 0 77,000 35,600 29,70 207e 37e 49e 9.2 419 165 BH4D 0e 11,000 51,000 4.910 26fe 12e 4.91 37e 4.91 37e 4.91 37e 4.91 37e 4.91 37e 4.91 37e 4.91 4.91 37e 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.92 4.91 4.92 4.92 4.91 4.92 4.92 4.92 4.91 4.92 4.92 4.92 4.91 4.92	053	244-65	0e	96,300	27,300	18,600e		289e	26e	30.7e	10.9e	385	90.9	.50		174	<2.0
BH4D 0e 121,000 51,700 15,000 4,910 261e 128e 21.1e 13.0e 58 36 BH4S 0e 91,000 58,000 21,900e 7,300 293e 70e 29.3e 12.7e 511 55 BH4A 145,000 33,500 22,900e 12,900 12,800 183e 50e 24.2 9.63 13.8 5.8 116 0 202,000 23,200 21,400e 1280 183e 50e 24.2 9.63 13.8 5.8 13.8 5.8 5.8 13.8 5.8 <td>054</td> <td>BH6</td> <td>0</td> <td>77,000</td> <td>35,600</td> <td>28,700</td> <td></td> <td>207e</td> <td>37e</td> <td>49.0</td> <td>9.2</td> <td>419</td> <td>165</td> <td>.20e</td> <td></td> <td>120</td> <td>99.9</td>	054	BH6	0	77,000	35,600	28,700		207e	37e	49.0	9.2	419	165	.20e		120	99.9
BH45 0e 91,000 58,000 21,900e 7,300 293e 70e 29.3e 12.7e 5.7 BH44 145,000 33,500 219,00e 12,200	055	BH4D	oe	121,000		15,000	4,910		128e	21.1e	13.0e	581	5.0	09:		25.7	9.7
BH24 145,000 33,500 122,000e 12,200	950	BH4S	0 e	91,000		21,900e	7,300		70e	29.3e	12.7e	511	5.5	.10		145	<2.0
IP 0 14,800 5,870 66,800e 2,840 160e 65e 24.2 9.63 218 5.5 II6 0 202,000 71,800 134,000e 12,800 34.00 67.6 34.5e 62.4 21 1,880 33.0 I21 0 99,900 23,200 21,900 34.00 267e 34.5e 6.6 16.1 427 32.1 BH71 0 135,000 63,900 81,500 4.580 454e 355e 10.7 42.8 1,095 32.1 BH85 0 197,000 84,800 40,900 7.450 358e 200e 32.7 42.8 1,095 25.1 BH15 0 46,100 12,400 24,80 156e 56.6 32.7 42.8 1,095 25.1 BH15 0 46,100 12,200 34,80 35.8 17.6 45.8 1,095 1,095 1,095 1,095 1,095 1,095 <td>057</td> <td>BH24</td> <td>;</td> <td>145,000</td> <td></td> <td>229,000e</td> <td>12,200</td> <td></td> <td>;</td> <td>1</td> <td>1</td> <td>:</td> <td>ŀ</td> <td>353</td> <td></td> <td>:</td> <td>1</td>	057	BH24	;	145,000		229,000e	12,200		;	1	1	:	ŀ	353		:	1
116 0 202,000 71,800 314,000e 1.800 183e 500e 624 21 1,880 33.0 121 0 99,900 23,200 21,900 34,00 267e 34.5e 26.3 16.1 427 321 BH71 0 135,000 63,900 81,500 4580 458e 206e 32.7 42.8 1005 481 BH95 0 197,000 84,800 40,900 7450 386 206 32.7 42.8 1,005 481 BH15 0 46,100 12,400 24,700 286 53.6 32.7 42.8 1095 22 BH16 0 46,100 12,400 24,800 33.6 32.4 42.8 10.9 21.9 48.9 BH77 0 46,100 13,000 13,100 13,100 13,100 13,100 13,100 13,100 13,100 13,100 13,100 13,100 13,100 13	850	IP	0	14,800		66,800e	2,840		<5e	24.2	9.63	218	5.5	.22e		2.9	3.4e
121 0 99,900 23,300 21,900 3,400 267e 34,5e 26,3 16,1 427 321 BH71 0 135,000 63,900 81,500 4,580 454e 355e 13.7e 20.3 1,005 481 BH9S 0 197,000 84,800 40,900 7,450 388e 200e 32.7 42.8 1,005 481 BH15 0 197,000 84,800 24,700 2,086 156e 32.7 42.8 1,095 25 110 0 207,000 40,100 212,000 36,800 156e 32.4 666 34.0 16.5 BH7D 0 207,000 19,200 24,80 569e 90e 11.0e 36.9 10.9 10.9 BH7D 0 247,000 19,200 17,800 324e 10.6e 17.3 41.0 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	059	116	0	202,000		314,000e	12,800		500e	624	21	1,880	33.0	2.50		532	9.6e
BH71 0 135,000 63,900 81,500 4,580 454e 355e 13.7e 20.3 1,005 481 BH95 0 197,000 84,800 40,900 7,450 38e 200e 32.7 42.8 1,009 25 BH15 0 207,000 12,400 24,700 2080 156e 56 32.7 42.8 1,009 25 110 0 207,000 40,100 212,000 36,800 53.7e 234e 666 34.0 2116 44.0 BH75 0 207,000 143,000 1920 234e 666 37.8 11.1 44.0 BH75 0 207,000 17,800 3150 171e 56 37.8 11.1 49.0 16.0 BK 0 208,000 13,800 33.20 187e 8.2 20.3 1.013 10.1 BK 0 208,000 14,800 6,180 13,10 <td< td=""><td>090</td><td>121</td><td>0</td><td>99,900</td><td></td><td>21,900</td><td>3,400</td><td></td><td>34.5e</td><td>26.3</td><td>16.1</td><td>427</td><td>321</td><td><.10</td><td></td><td>361</td><td>12.0</td></td<>	090	121	0	99,900		21,900	3,400		34.5e	26.3	16.1	427	321	<.10		361	12.0
BH95 0 197,000 84,800 40,900 7,450 358e 200e 32.7 42.8 1,099 25 BH15 0 46,100 12,400 24,700 2,080 156e <5	190	BH7I	0	135,000	63,900	81,500	4,580	454e	355e	13.7e	20.3	1,005	481	.70e		1,090	12.4e
BH15 0 44,100 12,400 24,700 2,080 156e <5e 35.6 3.9 219 16.5 110 0 207,000 40,100 212,000 36,800 53.7e 234e 666 34.0 2116 44.0 BH75 0 207,000 143,000 19,200 24,80 569e 900e 11.0e 36.0 1,973 80.5 BH7D 0e 15,400 6210 73,800 3,150 17.e <5e	790	BH9S	0	197,000	84,800	40,900	7,450	358e	200e	32.7	42.8	1,099	25	1.1e		381	13.6
110 0 207,000 40,100 212,000 36,800 53.7e 234e 666 34.0 2,116 44.0 BH75 0 331,000 143,000 19200 2,480 569e 900e 11.0e 36.0 1,973 80.5 BH7D 0e 15,400 6,210 73,800 3,150 171e <5e	903	BH15	0	46,100	12,400	24,700	2,080	156e	<5e	35.6	3.9	219	16.5	.40e		233	2.1e
BH7S 0 331,000 143,000 192,00 2480 569e 900e 11.0e 36.0 1,973 80.5 BH7D 0e 15,400 6,210 73,800 3,150 171e <5e	964	110	0	207,000	40,100	212,000	36,800	53.7e	234e	999	34.0	2,116	44.0	24.1e		43.8	8.9e
BH7D 0e 15,400 6,210 73,800 3,150 171e <5e 37.8 11.1 293 1,013 19 0 347,000 126,000 906,000 17,800 324e 1,060e 1,518e 20.3 4,125 106 18 0 208,000 88,400 832,000 39,200 187e 8.2 2,572e 17.3 3,63 306 BA5 0e 205,000 14,800 6,180 1,810 496e 36e 127 10.9 313 <3.0	90	BH7S	0	331,000	143,000	19,200	2,480	569e	900e	11.0e	36.0	1,973	80.5	1.10		1,550	38.4
19 0 347,000 126,000 906,000 17,800 324e 1,060e 1,518e 20.3 4,125 106 18 0 208,000 88,400 39,200 187e 8.2e 2,572e 17.3 3,632 306 B5 0e 69,200 14,800 6,180 1,810 180e 36e 17.1 10.9 31.3 53.0 B5 0e 205,000 44,200 239,000 8,330 298e 180e 391 21.8 1,654 12.75 D67 0 226,000 44,200 239,000 8,330 298e 180e 391 21.8 1,654 12.7 D67 0 226,000 44,200 3,400 164e 89e 1.6e 11.6 1,654 12.3 D68 0 81,200 1,600 3,400 1,430 1,46 85e 1.6e 11.6 11.6 11.6e 11.6e 11.6e 11.6e 11.6e </td <td>990</td> <td>BH7D</td> <td>0e</td> <td>15,400</td> <td>6,210</td> <td>73,800</td> <td>3,150</td> <td>171e</td> <td><5e</td> <td>37.8</td> <td>11.1</td> <td>293</td> <td>1,013</td> <td>.30e</td> <td></td> <td>10.4</td> <td>13.7</td>	990	BH7D	0e	15,400	6,210	73,800	3,150	171e	<5e	37.8	11.1	293	1,013	.30e		10.4	13.7
18 0 208,000 88,400 39,200 187e 8.2e 2,572e 17.3 3,632 306 B7 0e 69,200 14,800 6,180 1,810 496e 36e 12.1 10.9 313 <3.0	290	61	0	347,000	126,000	906,000	17,800	324e	1,060e	1,518e	20.3	4,125	106	1.50		313	9.0e
B7 0e 69,200 14,800 6,180 1,810 180e 36e 12.1 10.9 313 <3.0 B5 0e 205,000 35,300 237,000 13,100 496e 36e 278 23.5 1,380 28.0 BH28 0 226,000 44,200 239,000 8,330 298e 180e 31.8 1,654 12.75 16.5 D64 0 39,400 8,570 1,600 838 119e <5e	890	18	0	208,000	88,400	832,000	39,200	187e	8.2e	2,572e	17.3	3,632	306	32.0		510	24.9
B5 0e 205,000 35,300 237,000 13,100 496e 36e 278 23.5 1,380 28.0 BH28 0 226,000 44,200 239,000 8,330 298e 180e 31 1,654 12.75 D67 0 39,400 8,570 1,600 838 119e <5e	690	B7	0e	69,200	14,800	6,180	1,810	180e	36e	12.1	10.9	313	<3.0	.10e		<1.6	2.3e
BH28 0 225,000 44,200 239,000 8,330 298e 180e 391 21.8 1,654 12.75 D67 0 39,400 8,570 1,600 838 119e <5e	020	B5	0e	205,000	35,300	237,000	13,100	496e	36e	278	23.5	1,380	28.0	2.00e		619	7.1e
D67 0 39,400 8,570 1,600 838 119e <5e 1.6e 11.6e 11.6 116 430 D68 0 87,600 9,640 9,540 3,400 164e 89e 12.6e 13.7 332 7.0 C19 0 81,200 15,900 1,130 1,760 261e <5e	071	BH28	0	226,000	44,200	239,000	8,330	298e	180e	391	21.8	1,654	12.75	.30e		485	4.0e
D68 0 87,600 9,640 9,540 3,400 164e 89e 12.6e 13.7 332 7.0 C19 0 81,200 15,900 1,130 1,760 261e <5e	072	D67	0	39,400	8,570	1,600	838	119e	<5e	1.6e	9.11	164	<3.0e	.10e		11.7	3.5e
C19 0 81,200 15,900 1,130 1,760 261e <5e 1.9e 17.8 280 34.5 C25 0e 35,100 8,450 501,000 1,430 136e 40e 664 12.8 1,454 52.5 C18 0 120,000 23,900 141,000 5,680 338e 8.2e 288e 16.5 793 7.5 B10 0e 34,800 12,900 2,250 1,450 99.5e 37e 3.4 7.9 204 <3.0 B3 0e 118,000 54,600 570,000 13,000 450e 34e 972 23.3 2,216 4.5	073	D68	0	87,600	9,640	9,540	3,400	164e	89e	12.6e	13.7	332	7.0	.20e		112	3.8e
C25 0e 35,100 8,450 501,000 1,430 136e 40e 664 12.8 1,454 52.5 C18 0 120,000 23,900 141,000 5,680 338e 8.2e 288e 16.5 793 7.5 B10 0e 34,800 12,900 2,250 1,450 99.5e 37e 3.4 7.9 204 <3.0	074	C19	0	81,200	15,900	1,130		261e	<5e	1.9e	17.8	280	34.5	1.10		634	14.9
C18 0 120,000 23,900 141,000 5,680 338e 8.2e 288e 16.5 793 7.5 B10 0e 34,800 12,900 2,250 1,450 99.5e 37e 3.4 7.9 204 <3.0 B3 0e 118,000 54,600 570,000 13,000 450e 34e 972 23.3 2,216 4.5	075	C25	90	35,100	8,450	501,000		136e	40e	664	12.8	1,454	52.5	<.10		557	18.2
B10 0e 34,800 12,900 2,250 1,450 99.5e 37e 3.4 7.9 204 <3.0 B3 0e 118,000 54,600 570,000 13,000 450e 34e 972 23.3 2,216 4.5	9/0	C18	0	120,000	23,900	141,000		338e	8.2e	288e	16.5	793	7.5	.70e		3,333	9.6e
B3 0e 118,000 54,600 570,000 13,000 450e 34e 972 23.3 2,216 4.5	220	B10	0e	34,800	12,900	2,250		99.5e	37e	3.4	7.9	204	<3.0	<.10		<1.6	<2.0
	820	B3	0 e	118,000	54,600	570,000		450e	34e	972	23.3	2,216	4.5	2.60e		210	5.2

Table 16. Water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Acid (mg	<u> </u>	Calcium, dis-	Magne- sium, dis-		Potas- sium, dis-	Alka- linity (mg/L	Sulfate, dis-	•	Silica, dis-	Dis- solved	Sus- pended	Ammonia	lron, dis-	Manga- nese, dis-	Total organic
caCO ₃) (00435) (<u> </u>	solved (μg/L) (91051)	solved (μg/L) (91052)	(µg/L) (91053)	Solved (μg/L) (91054)	caCO ₃) (00417)	(mg/L) (00945)	(mg/L) (00940)	(mg/L) (00955)	(mg/L) (70301)	(mg/L) (70299)	as N) (00610)	solved (μg/L) (01046)	solved (μg/L) (01056)	(mg/L) (00680)
0e		61,500	15,800	0	4,830	207e	40e		9.2	962	<3.0	.020e	23.9	153	<2.0
0		36,200	8,260	1,740	689	104	ζ,		14.3e	569	9.5	.4e	10,400	225	40.9
0e		111,000	46,000	23,900	1,680	228e	999		11.8	652	5.0	<.10e	1,360	361	<2.0e
90		78,200	16,400	7,660	1,970	237e	<5e		18.6	367	14.0	909·	6,160	67.0	26.5
90		55,200	24,100	74,100	2,080	189e	<5e		12.6	471	10.0	.32e	1,980	82.0	2.1e
90		90,000	31,400	103,000	1,910	279e	67e		12.8	674	<3.0	<.10	24.5	<1.6	<2.0
9 ₀		59,000	6,190	15,000	16,200	179e	20e		24.2	267	<3.0	2.40e	388	61.8	5.5e
)e		198,000	17,600	1,450,000	19,300	129e	264e		16.7	5,080	30.5	.7e	1,390	410	16.3
90		119,000	37,400	32,900	10,100	360e	100e		16.7	619	0.09	.7e	514	439	10.4e
0		102,000	23,500	89,000	2,810	314e	116e		18.2	689	36.5	1.10	12,100	355	15.1
0		340,000	51	113,000	25,000	257e	386e		3.4	1,336	9.0	1.30	<15.5	<1.6	7.9e
0		158,000	73,600	32,200	2,670	354e	887e		17.3	887	46.5	.30e	30.8	4.3	4.4e
90		168,000	5,410	62,300	24,300	24.9c	440e		32.3	872	54.0	1.1e	27.9	41.4	5.5e
0		309,000	98,700	204,000	4,580	325	\$		7.7e	2,020	211	.2e	2,180	376	4.7e
0		102,000	37,900	7,600	4,160	596	84		13.7e	535	0.9	.le	1,150	422	4.3e
0		78,500	15,200	47,400	1,830	191	50		9.4e	474	11.0	<.01	<15.5	43.1	8.0
0		133,000	34,800	7,730	846	292	82		11.6e	770	4.0	.10	54.1	189	25.3
0		117,000	29,700	300,000	3,310	270	144		12.8	1,279	0.9	2.60	219	260	8.0
0		89,400	24,000	9,440	1,470	251e	51		11.1	420	<3.0	.30	<15.5	27.6	4.3
0		102,000	20,200	76,100	5,080	203	144		8.6	640	<3.0	<.10	208	426	4.7
0		55,500	11,500	129,000	1,180	225e	25		13.3	558	<3.0e	.5e	66.4e	26.1	4.0e
0		94,400	17,600	5,860	4,520	249	\$		12.6e	454	14.0	.10e	68.4	120	9.4e
0		128,000	28,100	14,100	4,920	203	180		29.6e	622	9.0	1.00e	2,870	148	4.1e
0		445,000	7,130	191,000	52,100	174	450		11.1e	6,780	146	12.0e	119	2.9	46.1
0		249,000	55,300	236,000	11,700	353	178		33.8e	2,156	26.0	1.1e	7,180	518	8.8e
0e		115,000	22,000	39,100	6,720	280e	104e		22.9	654	15.0	.50e	5,450	8.89	4.4e
0		82,800	098'6	277,000	5,400	195	77		32.1e	1,057	3.0	.10e	67.2	14.5	2.7e
0		73,300	7,240	298,000	11,700	195	237		24.8e	1,143	56.5	.30e	59.5	16.6	6.2e

Table 16. Water-quality properties and concentrations of common ions in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Acidity.	Calcium.	Magne-	Sodium.	Potas-	Alka- linity	Sulfate.	Chloride.	Silica.	Dis-	Sus-		Iron.	Manga-	Total
		(mg/L as	dis- solved	dis- solved	dis- solved	dis- solved	(mg/L as	dis- solved	dis- solved	dis- solved	solved	pended solids	Ammonia (mg/L	dis- solved	dis- solved	organic carbon
Sample number	Well	$CaCO_3$ (00435)	(μg/L) (91051)	(μg/L) (91052)	(μg/L) (91053)	(μg/L) (91054)	CaCO ₃) (00417)	(mg/L) (00945)	(mg/L) (00940)	(mg/L) (00955)	(mg/L) (70301)	(mg/L) (70299)	as N) (00610)	(μg/L) (01046)	(µg/L) (01056)	(mg/L) (00680)
S-107	ES	0	201,000	36,200	36,700	7,450	296	390	20.4	16.3	985	8.5	.30e	1,530	1,210	5.0e
S-108	BHSD	0	164,000	61,900	136,000	6,180	338e	154	375e	27.2	1,250	920e	1.2	2,680	199	19.2e
S-109	BH181	0e	37,100	4,900	33,300	3,460	81.6e	999	13.9	13.1	259	44.0	.5e	101	79.1	4.4e
S-110	BH32	0	57,400	120,000	125,000	57,200	657e	396	119e	23.1	1,290	229	44.3	275	115	209e
S-111	BHII	0	109,000	16,400	5,870	2,130	255e	54	9.16e	19.7	428	13.5e	.3e	1,990	486	5.3e
S-112	BH18D	0	10,400	4,040	66,300	4,090	267e	54	27.4e	12.0	305	5,312e	9.	67.2e	3.0	82.9e
S-113	D70	0	45,100	11,300	6,820	2,300	121	33	14.8	9.9e	236	87.5	.14e	160	10.4	7.1e
S-114	BH16D	0	17,100	7,100	63,600	3,480	165	\$	38.9	11.3	270	392	.30	132	8.9	6.2
S-115	BH16S	0	158,000	49,200	43,200	2,470	304	240	29.4	18.6	885	6.5	.20	40.0e	48.8	6.7
S-116	D75	0	64,800	19,500	4,570	594	203	36	2.9	11.6e	333	46.0	.20e	319	177	3.7e
S-117	C12	0	16,900	19,100	40,600	4,020	221e	340	65.7e	17.8	988	28.0e	2.20	10,200	1,590	8.7e
S-118	LK13	0	144,000	27,800	5,410	459	306e	180	18.1e	22	705	32.0e	80	10,700	313	21.1
S-119	120	0	437,000	118,000	345,000	31,300	603e	850	389e	ł	2,310	1,754e	2.2	51,800	1,910	117.9
S-120	6SM	0	172,000	44,900	120,000	11,500	185e	170	211e	19.3	919	27.0e	1.0	411	199	18.9e
S-121	WS7	0	514,000	22,800	16,900	61,400	74.6e	1,570	8.43e	51.8	2,310	5.0e	.37e	1,130	0.66	2.25e
S-122	WS2	0	134,000	26,600	21,800	24,900	205e	226	11.8e	49.2	673	5.5e	.3e	20.6e	6.3	8.9e
S-123	FIL01	0	6,860	3,970	94,800	2,080	195e	40	29.9e	1	311	780e	.4e	107e	10.0e	15.9e
S-124	WS5	0	166,000	51,700	66,700	22,900	548e	160	14.4e	29.7	186	28.5e	5.6	4,800	2,060	77.5e
S-125	FILO4	0	513,000	322,000	173,000	14,900	661e	1,930	168e	:	3,816	454e	2.7	14,800	640	73.7e
S-126	FILO5	0	320,000	265,000	279,000	8,140	814e	920	145e	ŀ	3,100	646e	6.	400	335	34.5e
S-127	FIL02	0	528,000	794,000	248,000	32,700	1,260e	3,850	188e	ŀ	6,370	64.5e	96	16,400	764	122.8e
S-128	FILO6	ł	5,580	5,060	293,000	4,760	ł	1	ł	ł	1	ł	<.30e	39.0e	3.5e	14.0e
S-129	C2	0	189,000	28	37,000	008'09	147e	340e	60.6e	8.6	829	<3.0	1.00e	<15.5	2.0e	13.4e

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993 [µg/L, microgram per liter; <, less than; e, estimated; -, no data; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

Sample	Well	Aluminum, dissolved (μg/L) (01106)	Antimony, dissolved (μg/L) (01095)	Arsenic, dissolved (μg/L) (01000)	Barlum, dissolved (μg/L) (01005)	Beryllium, dissolved (μg/L) (01010)	Cadmium, dissolved (μg/L) (01025)	Chromium, dissolved (µg/L) (01030)	Cobalt, dissolved (μg/L) (01035)	Copper, dissolved (µg/L) (01040)	Lead, dissolved (μg/L) (01049)
S-001	E-10	<23.5	<17.9	<1.7	47.1	<0.5	<1.7	<5.8	<3.8	<4.2	\ \ \
S-002	BH-21	26.6	<17.9	1.8	54.7	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-003	230-58	<23.5	<17.9	1.8	355	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-004	E-20	<23.5	<17.9	<1.7	113	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-005	234-142	<23.5	<17.9	9.5	63.6	<.>	<1.7	<5.8	<3.8	<4.2	<1.1
900-S	D-40	<23.5	<17.9	8.9	58.5	<.>	<1.7	<5.8	<3.8	<4.2	<1.1
S-007	WP1	<23.5	<17.9	10.2	15.3	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-008	IC	67.1	<17.9	<1.7	8.9	\$.	<1.7	<5.8	<3.8	<4.2	<1.1
S-009	G-1	<23.5	<17.9	<1.7	229	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-010	230-128	<23.5	<17.9	14.9	155	<.5	<1.7	<5.8	<3.8	<4.2	 1.1
S-011	BH-8	<23.5	<17.9	22.6	128	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-012	BH-22	<23.5	<17.9	<1.7	181	<.5	<1.7	<5.8	<3.8	<4.2	 1.1
S-013	BH-33	<23.5	<17.9	2	149	<.>	<1.7	<5.8	<3.8	<4.2	1.1
S-014	E-2	<23.5	<17.9	<1.7	30.5	<.5	<1.7	<5.8	<3.8	8.7	
S-015	D-1	<23.5	<17.9	<1.7	29.2	<.>	<1.7	<5.8	<3.8	9.4	<1.1
S-016	WP2	<23.5	<17.9	2.9	122	\$	<1.7	<5.8	<3.8	\$	4.2
S-017	230-24	196	<17.9	<1.7	52.2	<.5	<1.7	<5.8	<3.8	<4.2	1.3
S-018	D-11	<23.5	<17.9	<1.7	270	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-019	D-10	<23.5	<17.9	2.1	64.3	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-020	D-5A	383	<17.9	<1.7	14.7	<.5	<1.7	<5.8	<3.8	<4.2	1.6
S-021	225	<23.5	<17.9	1.9	16.1	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-022	D-20	37.4	<17.9	23.9	9.69	<.5	<1.7	<5.8	<3.8	<4.2	2.2
S-023	D-21	<23.5	<17.9	3,3	125	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-024	E-6	<23.5	<17.9	1.7	185	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-025	E-7	871	<17.9	<1.7	52.2	<.5	<1.7	<5.8	<3.8	<4.2	2
S-026	24	36.1	<17.9	<1.7	23.7	<\$	<1.7	<5.8	<3.8	<4.2	3.2
S-027	25	<25.9	<17.9	<1.7	42.2	<.5	<1.7	<5.8	<3.8	<4.2	<1.9

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Mercury, dissolved	Nickel, dissolved	Selenium, dissolved	Silver, dissolved	Thallium, dissolved	Vanadium, dissolved	Zinc, dissolved	Cyanide, dissolved
Sample number	Well	(μg/L) (71890)	(μg/L) (01065)	(μg/L) (01145)	(μg/L) (01075)	(μg/L) (01057)	(µg/L) (01085)	(μg/L) (01090)	(μg/L) (00723)
S-001	E-10	0.15e	<6.1	<2.3	<3.8	2.3e	3.7	<3.4	<10
S-002	BH-21	<.1e	41.3	<2.3	<3.8	2.3e	3.8	<3.4	<10
S-003	230-58	.15e	<6.1	<2.3	<3.8	1.4e	<3.3	4e	<10
S-004	E-20	<.1e	<6.1	<2.3	<3.8	2.4e	<3.3	<3.4	<10
S-005	234-142	<.1e	<6.1	<2.3	<3.8	2.3e	<3.3	<3.4	<10
900-S	D-40	<.1e	<6.1	<2.3	<3.8	1.2e	5.8	<3.4	<10
S-007	WP1	<.1e	<6.1	<2.3	<3.8	<1.1	<3.3	<3.4	<10
S-008	IC	.14e	<6.1	<2.3	<3.8	1.5e	<3.3	<3.4	26.2
S-009	G-1	<.1e	<6.1	<2.3	<3.8	3.8e	<3.3	<3.4	<10
S-010	230-128	.le	<6.1	<2.3	<3.8	2.6e	<3.3	9.4e	<10
S-011	BH-8	<.1e	<6.1	<2.3	<3.8	<1.1	<3.3	<3.4	<10
S-012	BH-22	<.1e	<6.1	<2.3	<3.8	<1.1	<3.3	<3.4	<10
S-013	BH-33	<.1e	<6.1	<2.3	<3.8	2.6e	3.4	5.2	212
S-014	E-2	<.1e	12.6	5.6	<3.8	2.3e	<3.3	<3.4	<10
S-015	D-1	<.1e	15	<2.3	<3.8	<1.1	<3.3	<3.4	<10
S-016	WP2	<.1e	<6.1	<2.3	<3.8	1.5e	3.9	<3.4	13.3
S-017	230-24	.le	<6.1	<2.3	<3.8	1.9e	<3.3	$e000^{a}$	<10
S-018	D-11	<.1e	<6.1	<2.3	<3.8	2.2e	<3.3	<3.4	<10
S-019	D-10	.11e	<6.1	<2.3	<3.8	1.9e	9.1	<3.4	<10
S-020	D-5A	.13e	<6.1	2.4	<3.8	1.4e	<3.3	630^{a}	<10
S-021	225	.12e	<6.1	<2.3	<3.8	<1.1	<3.3	3.5e	<10
S-022	D-20	.13e	<6.1	4.8	<3.8	1.7e	8.3	<3.4	<10
S-023	D-21	.14e	<6.1	<2.3	<3.8	1.6e	<3.3	6.3e	<10
S-024	E-6	.1e	<6.1	<2.3	<3.8	Зе	<3.3	<3.4	230
S-025	E-7	.19e	<6.1	3.8	<3.8	1.2e	4.2	<3.4	<10
S-026	24	<u>.</u> .	<6.1	<2.3	<3.8	2e	<3.3	411 ^a	<10
S-027	25	~	<6.1	<2.3	<3.8	1.2e	<3.3	$1,090^{a}$	<10

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Lead, dissolved (µg/L) (01049)	4.6	1.2	<1.1		<1.1	<1.1	1.5	1.4	<1.1	<1.1	<1.1	1.5	1.6	<3.8	2.7	1.2	2.2	<1.1	1.3	<1.1	<1.1>		1.3	\$	2.4	17.71	1.3	2.2
Copper, dissolved (µg/L) (01040)	4	12.7	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	14.2	10.5	2	<4.2	7.5	<4.1	<4.2	^	<4.2	5.8	<4.2	<4.2	<4.2	4	^	4	4 >	2	4 >
Cobalt, dissolved (μg/L) (01035)	<2.5	<3.8	<3.8	19.7	6.7	<3.8	<3.8	<3.8	6.1	<3.8	<3.8	<2.5	<3.8	<2.5	<2.5	<3.8	<2.5	<3.8	<2.5	<3.8	<3.8	<3.8	ы	<2.5	<2.5	<2.5	<2.5	3.0
Chromium, dissolved (µg/L) (01030)	<5.1	<5.8	<5.8	<5.8	36.1	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.1	<5.8	<5.1	<5.1	<5.8	<5.1	<5.8	5.1	<5.8	9.2	<5.8	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1
Cadmium, dissolved (µg/L) (01025)	<1.5	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.5	<1.7	<1.5	<1.5	<1.7	<1.5	<1.7	<1.5	<1.7	<1.7	<1.7	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Beryllium, dissolved (μg/L) (01010)	<1.2	<.5	<.5	<.5	<.5	\$.	<.5	<.5	<.5	<.5	<.5	<1.2	TT.	<1.2	<1.2	<.5	<1.2	<5	<1.2	<.5	<.5	<.5	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
Barium, dissolved (μg/L) (01005)	16.5	217	10.7	069	38.8	9.59	137	129	31.6	68.5	332	Ξ	35.6	17.2	8.61	58	41.8	109	214	909	46.1	25	232	43.6	75.3	92.4	180	62.1
Arsenic, dissolved (µg/L) (01000)	<2.7	<1.7	<1.7	10.8	7.9	6.1	127	2.1	18.6	<1.7	<1.7	<2.7	8.7	<2.7	4	14.1	2.7	6.9	<2.7	<1.7	3.1	3	292	12	<2.7	<2.7	<2.7	<2.7
Antimony, dissolved (μg/L) (01095)	<15.7	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	<15.7	<17.9	<15.7	<15.7	<17.9	<15.7	<17.9	<15.7	<17.9	<17.9	<17.9	<15.7	<15.7	<15.7	<15.7	<15.7	<15.7
Aluminum, dissolved (µg/L) (01106)	353	1,200	9.95	33.4	56.7	<23.5	52.6	446	46.7	53.7	62.8	<20.9	74.9	<20.9	<20.9	36.1	<20.9	33.7	<20.9	899	44	42.2	<20.9	<20.9	<20.9	<20.9	<20.9	<20.9
Well	W-1A	BH-30	П	=	113	112	114	BH-31	D-25	BH-29	BH-26	237-45	235-45	MW-5	MW-15	A-3	E-1	A-2	BH-27	B-2	A-1	A-4	115	244-125	244-65	9-HG	BH-4D	BH-4S
Sample number	S-028	S-029	S-030	S-032	S-033	S-034	S-035	S-036	S-037	S-038	S-039	S-040	S-041	S-042	S-043	S-044	S-045	S-046	S-047	S-048	S-049	S-050	S-051	S-052	S-053	S-054	S-055	S-056

¹¹⁴ Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

 Table 18.
 Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Vanadium,	Zinc,	Cyanide,
Sample number	Well	(µg/L) (71890)	μg/L) (μg/L) (01065)	(μg/L) (01145)	(µg/L) (01075)	(µg/L) (01057)	(µg/L) (01085)	(01090)	uissoived (μg/L) (00723)
S-028	W-1A	0.16	<4.7	<3.5e	\$>	į.	5	4.1	<10e
S-029	BH-30	, ,	<6.1	<2.3	<3.8	2.8	<3.3	20.2	<10
S-030	Ш	<.1e	<6.1	<2.3	<3.8	2.8e	<3.3	4.1e	<10
S-032	11	.32e	<6.1	4.1	<3.8	2.7e	5.2	20.5	<10
S-033	113	.22e	11.4	2.8	<3.8	3.6e	32.3	10.7e	<10
S-034	112	.11e	<6.1	<2.3	<3.8	3.6e	<3.3	40.8	<10
S-035	114	 	<6.1	<2.3	<3.8	4.9e	4.2	<3.4	<10
S-036	BH-31	.2e	<6.1	4.9	<3.8	2.1e	14	<3.4	<10
S-037	D-25	 	<6.1	<2.3	<3.8	2.3e	4.1	<3.4	14.2
S-038	BH-29	<u>~</u>	11.5	<2.3	<3.8	2.5e	<3.3	16.2	<10
S-039	BH-26	 	6.9	4.0	<3.8	99	<3.3	12.9	<10
S-040	237-45	.13	<4.7	<3.5	\$	ŀ	<2.6	4.2	<10e
S-041	235-45	<u>.</u>	<6.1	<2.3	<3.8	2.2e	<3.3	<3.4	<10
S-042	MW-5	.14e	<4.7	<3.7	\$	<1.4e	<2.6	<3.7	<10
S-043	MW-15	.15e	<4.7	<3.7	\$	<1.4e	<2.6	8.7	<10
S-044	A-3	<u>~</u>	<6.1	<2.3	<3.8	1.2e	<3.3	<3.4	31.4
S-045	E-1	<u>~</u>	<4.7	<3.5e	\$;	<2.6	<3.7	<10e
S-046	A-2	 	<6.1	<2.3	<3.8	1.3e	<3.3	<3.4	<10
S-047	BH-27	 	<4.7	<3.5	%	ł	3	14.8	<10e
S-048	B-2	1.1	<6.1	13.3	<3.8	4e	3.6	<3.4	<10
S-049	A-1	 	148	14.3	<3.8	1.6e	<3.3	<3.4	12
S-050	A-4	 	<6.1	<2.3	<3.8	<1.1	<3.3	<3.4	<10
S-051	115	×. i	<4.7	<3.5	<>	1	8.1	3.8	21.9e
S-052	244-125	.15e	<4.7	<3.7e	\$	<7e	<2.6	14.1	<10
S-053	244-65	.19e	<4.7	<3.7e	\$	<1.4e	<2.6	<3.7	<10
S-054	BH-6	.12	<4.7	<3.5e	\$	ŀ	<2.6	17.2	<10e
S-055	BH-4D	 	<4.7	<3.5e	\$	ì	<2.6	<6.2	<10e
S-056	BH-4S	.14e	9.2	<3.7	\$	<7e	3.1	5.5	<10

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Aluminum, dissolved (µg/L) (01106)	Antimony, dissolved (μg/L) (01095)	Arsenic, dissolved (μg/L) (01000)	Barium, dissolved (µg/L) (01005)	Beryllium, dissolved (µg/L) (01010)	Cadmium, dissolved (µg/L) (01025)	Chromium, dissolved (µg/L) (01030)	Cobalt, dissolved (µg/L) (01035)	Copper, dissolved (µg/L) (01040)	Lead, dissolved (μg/L) (01049)
S-057	BH-24	<20.9	<15.7	<2.7	55.5	<1.2	<1.5	<5.1	<2.5	4>	2.8
S-058	IP	<20.9	<15.7	<2.7	11.9	<1.2	<1.5	<5.1	<2.5	^	4.2
S-059	911	<20.9	<15.7	73	55.5	<1.2	<1.5	<5.1	<2.5	^	2.2
090-S	121	33.8	<17.9	5.1	9.99	<.5	<1.7	<5.8	<3.8	<4.2	<1.1
S-061	BH-71	<20.9	<15.7	<2.7	193	<1.2	<1.5	116	4.1	5.6	2.7
S-062	BH-9S	531	<17.9	5.3	207	<.5	<1.7	<5.8	<3.8	<4.3	<1.1
S-063	BH-15	367	<17.9	<1.7	31.6	<.5	<1.7	<5.8	<3.8	<4.2	1.1
S-064	110	23.9	<15.7	3.2	120	<1.2	<1.5	<5.1	<2.5	4>	2.3
S-065	BH-7S	<20.9	<15.7	9.9	145	<1.2	<1.5	<5.1	<2.5	4>	3.5
990-S	BH-7D	38.6	<15.7	2.7	26.3	<1.2	<1.5	<5.1	<2.5	^ 4	4.1>
S-067	61	26.2	<15.7	8.9	55.1	<1.2	<1.5	<5.1	<2.5	^ 4	2.9
890-S	18	182	<15.7	7.6	356	<1.2	<1.5	<5.1	3.3	1,660	3.5
690-S	B-7	<20.9	19.6	<2.7	S	<1.2	<1.5	<5.1	<2.5	^ 4	2.1
S-070	B-5	<20.9	<15.7	<2.7	490	<1.2	<1.5	<5.1	<2.5	^ 4	1.9
S-071	BH-28	21.3	<15.7	<2.7	138	<1.2	<1.5	<5.1	<2.5	4>	4.1>
S-072	L9-Q	24.5	20.1	<2.7	6.3	- <1.2	<1.5	<5.1	<2.5	4	1.5
S-073	D-68	<20.9	<15.7	3.6	101	<1.2	<1.5	7.9	<2.5	4>	4.1>
S-074	C-19	44	<15.7	3	46.3	<1.2	<1.5	<5.1	<2.5	4>	4.1>
S-075	C-25	196	<15.7	<1.7	36.3	<1.2	<1.5	5.2	<2.5	7.1	3.6
920-S	C-18	<20.9	<15.7	<2.7	108	<1.2	<1.5	<5.1	<2.5	^ 4	1.5
S-077	B-10	<20.9	<15.7	<2.7	S	<1.2	<1.5	<5.1	<2.5	^ 4	4.1>
S-078	B-3	42	<15.7	<2.7	332	<1.2	<1.5	<5.1	<2.5	^ 4	2.5
S-079	A-20	23.3	<15.7	<2.7	25	<1.2	<1.5	<5.1	<2.5	<u>^</u>	4.1>
S-080	W-3	418	<15.7	8.2	15.6	<1.2	<1.5	<5.1	<2.5	^ 4	
S-081	BH-23	23.0	<15.7	<2.7	26.3	<1.2	<1.5	<5.1	<2.5	^ 4	1.7
S-082	232-45	<20.9	<15.7	15.3	75.3	<1.2	<1.5	<5.1	<2.5	^ 4	<1.1
S-083	105	<20.9	<15.7	12.8	83	<1.2	<1.5	<5.1	<2.5	^ 4	<u></u>
S-084	106	<20.9	<15.7	<1.7	31.1	<1.2	<1.5	<5.1	<2.5	^ 4	<1.1
S-085	E3	<20.9	<15.7	<1.7	9.58	<1.2	<1.5	<5.1	<2.5	^ 4	1.1
980-S	13	9/9	<15.7	5.4	122	<1.2	<1.5	8.8	3	206	10.8

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well	Mercury, dissolved (µg/L) (71890)	Nickel, dissolved (µg/L) (01065)	Selenium, dissolved (µg/L) (01145)	Silver, dissolved (µg/L) (01075)	Thallium, dissolved (µg/L) (01057)	Vanadium, dissolved (µg/L) (01085)	Zinc, dissolved (µg/L) (01090)	Cyanide, dissolved (µg/L) (00723)
S-057	BH-24	0.15e	<4.7	<3.7e	\$	<7e	<2.6	<3.7	15.9
S-058	IP	.14e	<4.7	<3.7	<5	<7e	<2.6	<3.7	<10
S-059	116	.2e	<4.7	<3.7e	\$	<7e	<2.6	<3.7	<10
090-S	121	<u>.</u> .	<6.1	<2.3	<3.8	2.3e	<3.3	<3.4	<10
S-061	BH-71	\ -:-	156	<3.7e	\$	1	<2.6	7.3	<10e
S-062	BH-9S	- ;	<6.1	<2.3	<3.8	3.8e	<3.3	<3.4	<10
S-063	BH-15	7	<6.1	<2.3	<3.8	2e	<3.3	<3.4	<10
S-064	110	.32	<4.7	<3.7e	\$;	<2.6	<3.7	<10e
S-065	BH-7S	<u>.</u> ;	<4.7	<3.7e	\$	ì	4.3	<3.7	<10e
990-S	BH-7D	<u>-</u> ;	<4.7	<3.7e	\$	1	<2.6	<3.7	<10e
290-S	61	~ ~	<4.7	<3.7e	<\$	}	<2.6	207	<10e
890-S	81	~	83.7	<3.7e	\$	ł	<2.6	33.7	<10e
690-S	B-7	 	6.5	4.8e	\$	ŀ	<2.6	<3.7	<10e
S-070	B-5	_; `	<4.7	<3.7e	\$	1	<2.6	<3.7	<10e
S-071	BH-28	<u>.</u> .	12	<3.7e	<>	I	<2.6	<3.7	<10e
S-072	D-67	×. 1	<4.7	<3.7e	\$	ł	<2.6	7.5	<10e
S-073	D-68		8.9	<3.7e	\$	ŀ	<2.6	<3.7	<10e
S-074	C-19	<u>.</u> .	<4.7	<3.7e	\$	ł	<2.6	<3.7	<10e
S-075	C-25	.71	7.4	<2.3	\$	3.1e	<2.6	<3.7	<10
920-S	C-18	.11	<4.7	<3.7e	\$	ł	<2.6	<3.7	<10e
S-077	B-10	 	<4.7	<3.7e	\$	I	<2.6	<3.7	<10e
S-078	B-3	.22	<4.7	<3.7e	<\$	ł	<2.6	<3.7	33.3e
S-079	A-20	 	27.8	<3.7e	\$;	<2.6	<3.7	<10e
S-080	W-3	.17	<4.7	2.8e	<5	<1.1	5.7	<3.7	<10
S-081	BH-23	 	<4.7	<3.7e	<5	1	<2.6	<3.7	<10e
S-082	232-45	.11	<4.7	<2.3	<5	2.5e	<2.6	<3.7	<10
S-083	105	11.	<4.7	<2.3	<5	2.8e	<2.6	<3.7	<10
S-084	106	- .	<4.7	2.9e	\$	3.3e	4.1	<3.7	<10
S-085	E3	.16	<4.7	<2.3	\$	2.5e	3.2	<3.7	<10
980-S	13	.18	13.1	3.2e	\$	3.6e	38	531	<10

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Well	Aluminum, dissolved (µg/L)	Antimony, dissolved (µg/L)	Arsenic, dissolved (µg/L)	Barium, dissolved (μg/L)	Beryllium, dissolved (µg/L)	Cadmium, dissolved (µg/L)	Chromium, dissolved (µg/L)	Cobalt, dissolved (µg/L)	Copper, dissolved (µg/L)	Lead, dissolved (µg/L)
i	53.5	<15.7	3	92.1	<1.2	<1.5	(5.1	(01033)	268	1.4
	21.4	<15.7	12.2	157	<1.2	<1.5	<5.1	<2.5	^	2.9
	31.6	<15.7	<1.7	313	<1.2	<1.5	<5.1	<2.5	^ 4	1.3
	<20.9	<15.7	<1.7	51.9	<1.2	<1.5	<5.1	<2.5	18.6	<1.1
	50.3	<15.7	<1.7	57.1	<1.2	<1.5	<5.1	<2.5	^	1.9
	101	<15.7	2.6	8.06	<1.2	<1.5	7.6	<2.5	4	3
	<20.9	<15.7	<1.7	51.9	<1.2	<1.5	<5.1	<2.5	^ 4	
	<20.9	<15.7	<1.7	22.1	<1.2	2	<5.1	<2.5	^ 4	1. >
	26.5	<15.7	2.1	23.4	<1.2	<1.5	<5.1	<2.5	40.1	1.8
	<20.9	<15.7	2.7	43.8	<1.2	<1.5	<5.1	<2.5	100	
	<20.9	<15.7	<1.7	24.4	<1.2	<1.5	<5.1	<2.5	61.4	9.1
	<20.9	<15.7	<1.7	32.2	<1.2	.5</td <td><5.1</td> <td><2.5</td> <td>8.8</td> <td>1.3</td>	<5.1	<2.5	8.8	1.3
	<23.5	<17.9	3.3	125	\$	<1.7	<5.8	<3.8	<4.2	4.1
	<20.9	<15.7	2.6	29.8	<1.2	<1.5	<5.1	<2.5	9	5
i	<20.9	<15.7	3.3	121	<1.2	<1.5	<5.1	<2.5	\$	6.5
	49.7	<15.7	3	237	<1.2	<1.5	<5.1	<2.5	4	∠ 1.1
	<20.9	<15.7	2.7	158	<1.2	<1.5	<5.1	<2.5	^	<1.1
	21.3	<15.7	20	143	<1.2	<1.5	<5.1	<2.5	^	△
	<20.9	<15.7	<1.7	44	<1.2	<1.5	<5.1	<2.5	^	2.4
	<20.9	<15.7	3.6	18.8	<1.2	<1.5	<5.1	<2.5	4.3	<1.1
	<20.9	<15.7	<1.7	9.99	<1.2	<1.5	<5.1	<2.5	^	1.1
	<20.9	<15.7	5.8	176	<1.2	<1.5	<5.1	<2.5	^	<1.1
	24	<15.7	4.6	30.2	<1.2		<5.1	<2.5	11.4	1.9
	<20.9	<15.7	4.1	248	<1.2	<1.5	<5.1	3.2	4 >	4.1
	233	<15.7	<1.7	47.8	<1.2	<1.5	<5.1	<2.5	18.9	3.7
	63.2	<15.7	2	30.2	<1.2	<1.5	<5.1	<2.5	^	1.9
	<20.9	<15.7	4.7	18.8	<1.2	<1.5	<5.1	<2.5	^	1.6
	<20.9	<15.7	<1.7	26.4	<1.2	<1.5	<5.1	<2.5	^	1.7

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Weil	Mercury, dissolved (uq/L)	Nickel, dissolved (µg/L)	Selenium, dissolved (µq/L)	Silver, dissolved (µa/L)	Thallium, dissolved (ug/L)	Vanadium, dissolved (uq/L)	Zinc, dissolved (uq/L)	Cyanide, dissolved (µq/L)
number	name	(71890)	(01065)	(01145)	(01075)	(01057)	(01085)	(01090)	(00723)
S-087	122	<0.1	11.5	2.5e	<5	2.8e	4.2	165	<10
S-088	B-8	-	<4.7	<3.7e	\$	ł	2.9	<3.7	<10e
680-S	BH-1D	.25	<4.7	<2.3	\$	2.2e	3.1	4.3	<10
S-090	BH-1S	~	8.3	3.1e	\$	1.5e	2.6	. 15.6	<10
S-091	BH-18S	<u>-</u>	<4.7	3.4e	\$	<1.1	52.7	<3.7	14
S-092	BH-2	-	14.4	8.6e	\$	2.3e	3.6	11.6	<10
S-093	BH-25	-	<4.7	5.3e	\$	<1.1	<2.6	<3.7	<10
S-094	BH-14	-	<4.7	3.7e	\$	2.2e	<2.6	<3.7	<10
S-095	BH-19	-	14.7	3.2e	\$	2.8e	3.6	<3.7	<10
960-8	BH-13	.25e	120	<2.3	\$	1.8	3	<3.7	<10
S-097	BH-12	.14e	<4.7	2.8	\$	<u> </u> ∠	<2.6	6.3	<10
8-00-8	BH-20	.15e	<4.7	2.7	\$	1.2	<2.6	<3.7	<10
8-099	BH-17	.16e	27.5	<2.3	\$	1.5	<2.6	<3.7	<10
S-100	D-45	-	19.5	<2.3	\$	2.5e	3.1	<3.7	<10
3-101	MW-1	.18e	<4.7	<2.3	\$	1.1	<2.6	<3.7	<10
S-102	12	1.1	5.8	2.8e	\$	4.6e	6.2	<3.7	164
5-103	BH-5S	- .	<4.7	<2.3	\$	1.9e	<2.6	<3.7	<10
3-104	C-3	- .	<4.7	<2.3	\$	1.9e	<2.6	<3.7	<10
3-105	C-4	.15e	32.5	4.6e	\$	2.6	<2.6	9.9	<10
S-106	C-1	.14e	38	17.2	\$	2	<2.6	<3.7	11.6
S-107	E-5	.12e	<4.7	<2.3	\$	<u>.</u>	<2.6	<3.7	<10
S-108	BH5D	.15e	34.6	<2.3	\$	1.4	<2.6	34.4	<10
S-109	BH18I	.16e	4.8	<2.3	\$	<1.1	<2.6	<3.7	<10
S-110	BH32	.28e	7	<2.3	\$	<1.1>	<2.6	<3.7	18.7
S-111	BHII	.12e	<4.7	4	\$>	!.	<2.6	40.2	<10
S-112	BH18D	.13e	C4.7	<2.3	\$	1.3	<2.6	<3.7	<10
S-113	D70	.13e	9.4	<2.3	\$	1.5	<2.6	<3.7	<10
5-114	BH16D	.12e	<4.7	<2.3	\$	<u> </u>	<2.6	<3.7	<10

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Weil	Aluminum, dissolved (µg/L) (01106)	Antimony, dissolved (µg/L) (01095)	Arsenic, dissolved (μg/L) (01000)	Barium, dissolved (μg/L) (01005)	Beryllium, dissolved (μg/L) (01010)	Cadmium, dissolved (µg/L) (01025)	Chromium, dissolved (µg/L) (01030)	Cobalt, dissolved (μg/L) (01035)	Copper, dissolved (µg/L) (01040)	Lead, dissolved (µg/L) (01049)
S-115	BH16S	<20.9	<15.7	<1.7	47.8	<1.2	<1.5	<5.1	<2.5	106	1.2
S-116	D75	350	<15.7	<1.7	9.99	<1.2	<1.5	11	2.8	13.6	<u>^</u>
S-117	C12	<20.9	<15.7	<1.7	80.4	<1.2	<1.5	<5.1	<2.5	^ 4	1.2
S-118	LK13	<20.9	<15.7	10.1	124	<1.2	<1.5	<5.1	<2.5	^	<u>^</u>
5-119	120	7,280	<15.7	18.3	100	1.5	<1.5	21.3	13.6	16.7	54.2
S-120	6SM	<20.9	<15.7	2.8	148	<1.2	<1.5	<5.1	<2.5	11.5	
S-121	WS7	<20.9	<15.7	<1.7	25.1	<1.2	<1.5	<5.1	<2.5	<u>^</u>	<1.1
S-122	WS2	<20.9	<15.7	1.9	81	<1.2	<1.5	10.6	<2.5	15.4	1. 1
S-123	FIL01	<20.9	<15.7	<1.7	18	<1.2	<1.5	<5.1	<2.5	^ 4	3.5
5-124	WS5	<20.9	<15.7	2.1	113	<1.2	<1.5	<5.1	<2.5	^	2.2
S-125	FIL04	2,220	<15.7	18.4	30.9	<1.2	<1.5	6.1	5	4.3	10.3
S-126	FILO5	<20.9	<15.7	9.5	21.9	<1.2	<1.5	<5.1	11.2	8.1	1.2
S-127	FILO2	<20.9	<15.7	11.6	16.7	<1.2	<1.5	<5.1	51.2	27.9	2.3
S-128	FILO6	<20.9	<15.7	7.9	\$	<1.2	<1.5	<5.1	<2.5	^	1.4
S-129	C2	107	<15.7	<1.7	54.1	<1.2	<1.5	<5.1	<2.5	4>	1.2

Table 18. Concentrations of trace elements and cyanide in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well	Mercury, dissolved (µg/L) (71890)	Nickel, dissolved (µg/L) (01065)	Selenium, dissolved (µg/L) (01145)	Silver, dissolved (µg/L) (01075)	Thallium, dissolved (µg/L) (01057)	Vanadium, dissolved (μg/L) (01085)	Zinc, dissolved (μg/L) (01090)	Cyanide, dissolved (µg/L) (00723)
S-115	BH16S	0.12e	<4.7	<2.3	\$	6.1	<2.6	<3.7	<10
S-116	D75	.12e	51	<2.3	\$	<u></u>	<2.6	11.1	<10
S-117	C12	.14e	<4.7	<2.3	\$	2.1	4	43.7	<10
S-118	LK13	.17e	<4.7	2.3	\$	1.5	2.6	43.7	<10
S-119	120	.59e	22.8	2.5	\$		39.7	151	10.7
S-120	6SM	.16e	C4.7	<2.3	\$	2.1	<2.6	<3.7	<10
S-121	WS7	.14e	C4.7	<2.3	\$	2.1	<2.6	<3.7	<10
S-122	WS2	.12e	<4.7	5.4	\$	4.1.	9.9	43.7	27.8
S-123	FILO1	.24e	<4.7	<2.3	\$	<1.1	<2.6	58.8	<10
S-124	WS5	.34e	<4.7	<2.3	\$	<1.1	5	<3.7	98.2
S-125	FILO4	.15e	376	3.4	\$	<1.1	6.6	25.9	<10
S-126	FILOS	.13e	233	3	\$	<1.1	7.1	13.1	<10
S-127	FILO2	.13e	104	2.4	\$	1.3	<2.6	7.5	<10
S-128	FILO6	.24e	42.9	<2.3	\$	1.1	<2.6	43.7	<10
S-129	C2	.34e	<4.7	<2.3	\$	<1.1	24.5	<3.7	<10

^aWell is constructed of galvanized casing that is contributing zinc to the sample.

[µg/L, microgram per liter; <, less than; e, estimated; d, sample was diluted; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993 STORET parameter codes]

	Chloro-		Carbon di-	1,1-Di- chloro-	1,1-Di- chloro-	1,2-Di-	Chloro-	1,2-Di-	Methyl- ethyl-
chloride, total	ethane, chic total to	-			ethane, total	chloro- ethene,	torm, total	chloro- ethane	ketone, total
(μg/L) (μg/L) ((30202) (39175) (3		(μg/L) (μg/L) (34423) (81552)			(μg/L) (34496)	(μg/L) (45617)	(µg/L) (32106)	(µg/L) (32103)	(μg/L) (81595)
<10			l	i	<10 	0I>	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
_ <10					<10	0 I>	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<120d					<120d	<120d	<120d	<120d	<120d
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10
<10					<10	<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

	2-Hexa-	none, total	(μg/L) (77103)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	0i>
Methyl-	isobutyl	ketone, total	(µg/L) (78133)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
	Bromo-	total	(μg/L) (32104)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
trans- 1,3-Di-	chloro-	propane, total	(µg/L) (34699)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
		benzene, total	(µg/L) (34030)	<10	8e	<10	<10	<10	110	<10	<10	01>	<10	<10	<10	<10	<10	<10	<10	<10	01>	<10	<10	<10	1,800d	42	<10	<10	<10	<10	<10	<10
1,1,2-Tri-	chloro-	etnane, total	(μg/L) (34511)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
Chloro- di-	bromo-	metnane, total	(µg/L) (32105)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	</th <th><10</th> <th><10</th>	<10	<10
į	chloro-	etniyene, total	(µg/L) (39180)	<10	<10	<10	<10	<10	<10	01>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	01×	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
cis- 1,3-Di-	chloro-	propene, total	(μg/L) (34704)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	01>	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
1,2-Di-	chloro-	propane, total	(μg/L) (34541)	<10	<10	<10	<10	<10	<10	0I>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
Chloro-	bromo-	mernane, total	(μg/L) (32101)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
			(µg/L) (32102)																													
1.1.1-Tri	chloro-	etnane, total	(μg/L) (34506)	<10	<10	· <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<120d	<10	<10	<10	<10	<10	<10	<10
			Well	E10	BH21	230-58	E20	234-142	D40	WPI	IC	G-1	230-128	BH8	BH22	BH33	E2	D1	WP2	230-24	D11	D10	D-5A	225	D20	D21	E6	E7	24	25	W-1 A	BH30
			Sample number																													

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Tetra- chloro- ethylene,	1,1,2,2- Tetra- chloro-				Styrene,	Xylene,
Sample number	Well		ethane (μg/L) (34516)	total (µg/L) (34010)	total (μg/L) (34301)	total (μg/L) (34371)	total (µg/L) (77128)	total (μg/L) (81551)
S-001	1		<10		1		<10	VI0
S-005			<10				<10	<10
S-003			<10				<10	<10
S-004			<10				<10	<10
S-005			<10				<10	<10
900-S			<10				<10	<10
S-007			<10				<10	<10
S-008			<10				<10	<10
S-009			<10				<10	<10
S-010			<10				<10	<10
S-011			<10				<10	<10
S-012			<10				<10	<10
S-013			<10				<10	<10
S-014			<10				<10	<10
S-015			<10				<10	<10
S-016			- <10		1		- <10	~ 01>
S-017			<10				<10	<10
S-018			<10				<10	<10
S-019			<10				<10	3е
S-020			<10				<10	<10
S-021			<10				<10	<10
S-022			<120d				<120d	<120d
S-023			<10				<10	<10
S-024			<10				<10	<10
S-025			<10				<10	<10
S-026			<10				<10	<10
S-027			<10				<10	<10
S-028			<10				<10	<10
S-029			<10				<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

				Vio	Chloro-	Methylene		Carbon	1,1-Di-	1,1-Di-	1 2.Di.	Chloro	1 2.Di.	Methyl-
		Chloro-	Bromo-	chloride,	ethane,	chloride,	Acetone,	sulfide,	ethylene,	ethane,	chloro-	form,	chloro-	ketone,
Sample	Well	metnane (μg/L) (30201)	metnane (μg/L) (30202)	total (µg/L) (39175)	total (μg/L) (34311)	total (µg/L) (34423)	total (µg/L) (81552)	total (µg/L) (77041)	total (µg/L) (34501)	total (µg/L) (34496)	etnene (µg/L) (45617)	total (μg/L) (32106)	etnane (μg/L) (32103)	total (µg/L) (81595)
S-030	TI	<10	>101>	<10	<10	<10	<10	<10	<10	<10 <10	<10	01>	<10	<10
S-032	11	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10
S-033	113	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	oI>	<10	<10
S-034	112	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-035	114	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-036	BH31	<10	<10	<10	<10	<10	19	<10	01>	The state of the state of</td <td><10</td> <td><10</td> <td>QI></td> <td><10</td>	<10	<10	QI>	<10
S-037	D25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-038	BH29	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-039	BH26	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-040	237-45	01>	<10	<10	<10	<10	<10	<10	<10	<i0< td=""><td><10</td><td><10</td><td><10</td><td><10</td></i0<>	<10	<10	<10	<10
S-041	235-45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-042	MW-5	<10	<10	<10	<10	<10	<10	<10	</td <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td><10</td>	<10	<10	<10	<10	<10
S-043	MW-15	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10	<10
S-044	A3	<33d	<33d	<33d	<33d	<33d	<33d	<33d	<33d	7e,d	<33d	<33d	<33d	<33d
S-045	E1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-046	A2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-047	BH27	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-048	B2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ol>	<10
S-049	ΑI	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-050	A4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-051	115	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-052	244-125	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-053	244-65	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-054	BH6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-055	BH4D	<10	<10	<10	<10	<10	oI>	<10	<10	<10	<10	<10	<10	<10
S-056	BH4S	<10	<10	<10	<10	<10	The state of the state of</td <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td><10</td>	<10	<10	<10	<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

	2-Hexa-	none, total	(μg/L) (77103)	<10	<10	<10	<10	7e	<10	<10	<10	<10	<10	<10	<10	<10	<33d	0 <u>I</u> >	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10
	Metnyl- isobutyl	ketone, total	(µg/L) (78133)	<10	<10	<10	<10	4e	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Bromo-	form, total	(μg/L) (32104)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
trans-	chloro-	propane, total	(µg/L) (34699)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
		Benzene, total	(µg/L) (34030)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	530d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
i i	1,1,2-Iri- chloro-	ethane, total	(μg/L) (34511)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chloro-	al- bromo-	methane, total	(μg/L) (32105)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
ļ	chloro-	ethlyene, total	(µg/L) (39180)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	0 >	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis-	chloro-	propene, total	(µg/L) (34704)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0 >	<10	<33d	<10	<10	<10	<10	0I>	~10 ~10	01>	<10	<10	<10	<10	<10
ä	chloro-	propane, total	(µg/L) (34541)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
i i	chioro- bromo-	methane, total	(µg/L) (32101)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Carbon tetra-	chloride, total	(µg/L) (32102)	<10	<10	ol>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	chloro-	ethane, total	(μg/L) (34506)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<33d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
			Well	IT	П	113	112	114	BH31	D25	BH29	BH26	237-45	235-45	MW-5	MW-15	A3	EI	A2	BH27	B2	ΑI	A4	115	244-125	244-65	BH6	BH4D	BH4S
			Sample number	S-030	S-032	S-033	S-034	S-035	S-036	S-037	S-038	S-039	S-040	S-041	S-042	S-043	S-044	S-045	S-046	S-047	S-048	S-049	S-050	S-051	S-052	S-053	S-054	S-055	S-056

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Tetra- chloro-	1,1,2,2- Tetra-		Chloro-	Ethyl		
		ethylene,	chloro-	Toluene,	benzene,	benzene,	Styrene,	Xylene,
		total	ethane	total	total	total	total	total
Sample number	Well	(μg/L) (34475)	(µg/L) (34516)	(µg/L) (34010)	(μg/L) (34301)	(µg/L) (34371)	(µg/L) (77128)	(μg/L) (81551)
S-030	II	<10	<10	<10	<10	<10	<10	<10
S-032	Ш	<10	<10	<10	<10	<10	<10	<10
S-033	113	<10	<10	<10	<10	<10	<10	<10
S-034	112	<10	<10	<10	<10	<10	<10	<10
S-035	114	<10	Зе	<10	<10	<10	<10	<10
S-036	BH31	<10	<10	<10	<10	<10	<10	<10
S-037	D25	<10	<10	<10	<10	<10	<10	<10
S-038	BH29	<10	<10	<10	<10	<10	<10	<10
S-039	BH26	<10	<10	<10	<10	<10	<10	<10
S-040	237-45	<10	<10	<10	<10	<10	<10	<10
S-041	235-45	<10	<10	<10	<10	<10	<10	<10
S-042	MW-5	<10	<10	<10	<10	<10	<10	<10
S-043	MW-15	<10	<10	<10	<10	<10	<10	<10
S-044	A3	<33d	<33d	<33d	<33d	<33d	<33d	<33d
S-045	E1	<10	<10	<10	<10	<10	<10	<10
S-046	A2	<10	<10	<10	<10	<10	<10	<10
S-047	BH27	<10	<10	<10	<10	<10	<10	<10
S-048	B2	<10	<10	<10	<10	<10	<10	2e
S-049	ΑI	<10	<10	<10	<10	<10	<10	<10
S-050	A4	<10	<10	<10	<10	<10	<10	<10
S-051	115	<10	<10	<10	<10	<10	<10	<10
S-052	244-125	<10	<10	<10	<10	<10	<10	<10
S-053	244-65	<10	<10	<10	<10	<10	<10	<10
S-054	BH6	<10	<10	<10	<10	<10	<10	<10
S-055	BH4D	<10	<10	<10	<10	<10	<10	<10
S-056	BH4S	<10	<10	<10	<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

				Viny	Chloro	Mathylone		Carbon	1,1-Di-	1,1-Di-	1 2.Di.	Chloro	1 9.Di.	Methyl-
		Chloro-	Bromo-	chloride,	ethane,	chloride,	Acetone,	sulfide,	ethylene,	ethane,	chloro-	form,	chloro-	ketone,
		methane	methane	total	ethene	total	ethane	total						
Sample number	Well	(µg/L) (30201)	(µg/L) (30202)	(µg/L) (39175)	(μg/L) (34311)	(μg/L) (34423)	(µg/L) (81552)	(µg/L) (77041)	(μg/L) (34501)	(µg/L) (34496)	(μg/L) (45617)	(µg/L) (32106)	(µg/L) (32103)	(μg/L) (81595)
S-057	BH24	<10	<10	0I>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-058	IP	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-059	116	<10	<10	<10	<10	oI>	<10	<10	<10	<10	<10	<10	<10	<10
090-S	121	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-061	BH7I	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-062	BH9S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-063	BH15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-064	110	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-065	BH7S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
990-S	BH7D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2-067	61	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
890-S	81	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
690-S	B7	ol>	0 I>	<10	<10	<10	<10	<10	<10	<10	<10	Se.	<10	<10
S-070	B5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-071	BH28	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-072	D67	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-073	P68	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	oI>	<10	<10
S-074	C19	<10	<10	<10	<10	<10	200	<10	<10	<10	<10	<10	<10	<10
S-075	C25	<10	<10	<10	<10	<10	<10	01>	<10	<10	<10	<10	<10	<10
920-S	C18	<10	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10
S-077	B10	<10	<10	0I>	<10	<10	0I>	<10	<10	<10	<10	<10	<10	<10
S-078	B3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-079	A20	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-080	W-3	<10	<10	<10	<10	<10	<10	0I>	<10	<10	<10	<10	<10	<10
S-081	BH23	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-082	232-45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Methyl-	isobutyl 2-Hexa- ketone none	_	(μg/L) (μg/L) (78133) (77103)						<10 <10			<10 <10			<10 <10					<10 <10			<10 <10					
	Bromo- form.	total	(μg/L) (32104)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<pre><!-- <! The state</td--></pre>
trans- 1,3-Di-	chloro- propane.	total	(µg/L) (34699)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	0 √ √
	Benzene,	total	(µg/L) (34030)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	200	<10	<10	<10	<10	,	<10	~10 ~10
1,1,2-Tri-	chloro- ethane,	total	(μg/L) (34511)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	,	\ \	<10 <10
Chloro- di-	bromo- methane,	total	(μg/L) (32105)	01>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	· ·	217	~10 ~10
Ė	chloro- ethlyene,	total	(µg/L) (39180)	ol>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		21/	<10 <10
cis- 1,3-Di-	chloro- propene,	total	(µg/L) (34704)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	\ \ \	27	01>
1,2-Di-	chloro- propane,	total	(μg/L) (34541)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	217	015 10
Di- chloro-	bromo- methane,	total	(μg/L) (32101)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	21,	01>
Carbon	tetra- chloride,	total	(μg/L) (32102)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	27,	01>
1,1,1-Tri-	chioro- ethane,	total	(μg/L) (34506)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	2.7	<10
			Well																									W-3
			Sample	S-057	S-058	S-059	090-S	S-061	S-062	S-063	S-064	S-065	990-S	2-067	890-S	690-S	S-070	S-071	S-072	S-073	S-074	S-075	920-S	S-077	S-078	S-079		S-080

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Tetra-	1,1,2,2-					
		chloro- ethylene,	Tetra- chloro-	Toluene,	Chloro- benzene,	Ethyl benzene,	Styrene,	Xylene,
		total	ethane	total	total	total	total	total
Sample number	Well name	(µg/L) (34475)	(µg/L) (34516)	(μg/L) (34010)	(μg/L) (34301)	(µg/L) (34371)	(µg/L) (77128)	(µg/L) (81551)
S-057	BH24	<10	<10	<10	<10	<10	<10	<10
S-058	IP	<10	<10	<10	<10	<10	<10	3e
S-059	116	<10	<10	<10	<10	<10	<10	<10
090-S	121	<10	<10	<10	<10	<10	<10	<10
S-061	BH7I	<10	<10	<10	<10	<10	<10	<10
S-062	S6H8	<10	<10	<10	<10	<10	<10	<10
S-063	BH15	<10	<10	<10	<10	<10	<10	<10
S-064	110	<10	<10	<10	<10	<10	<10	<10
S-065	BH7S	<10	<10	<10	<10	<10	<10	<10
990-S	BH7D	<10	<10	<10	<10	<10	<10	<10
2-067	61	<10	<10	<10	<10	<10	<10	<10
890-S	81	<10	<10	<10	<10	<10	<10	<10
S-069	B7	<10	<10	<10	<10	<10	<10	<10
S-070	B5	<10	<10	<10	<10	<10	<10	<10
S-071	BH28	<10	<10	<10	<10	<10	<10	<10
S-072	D67	<10	<10	<10	<10	<10	<10	<10
S-073	D68	<10	<10	<10	<10	<10	<10	<10
S-074	C19	<10	<10	12	<10	22	<10	140
S-075	C25	<10	<10	<10	<10	<10	<10	<10
920-S	C18	<10	<10	<10	<10	<10	<10	<10
S-077	B10	<10	<10	<10	<10	<10	<10	<10
S-078	B3	<10	<10	<10	<10	<10	<10	<10
S-079	A20	<10	<10	<10	<10	<10	<10	<10
080-S	W-3	<10	<10	<10	<10	<10	<10	<10
S-081	BH23	<10	<10	<10	<10	<10	<10	<10
S-082	232-45	<10	<10	<10	<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

				View	9	Total visit of		Carbon	1,1-Di-	1,1-Di-	2	2017	ä	Methyl-
		Chloro-	Bromo-	chloride,	ethane,	chloride,	Acetone,	sulfide,	ethylene,	ethane,	chloro-	form,	chloro	ketone,
Sample number	Well	metnane (μg/L) (30201)	metnane (µg/L) (30202)	total (µg/L) (39175)	total (µg/L) (34311)	totar (μg/L) (34423)	total (µg/L) (81552)	(µg/L) (77041)	total (µg/L) (34501)	rotar (µg/L) (34496)	ernene (μg/L) (45617)	total (µg/L) (32106)	ernane (μg/L) (32103)	total (μg/L) (81595)
S-083	105	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-084	901	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-085	E3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
980-S	13	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-087	122	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-088	B8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-089	BHID	<10	<10	<10	<10	<10	37	<10	<10	<10	<10	<10	<10	<10
060-S	BHIS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-091	BH18S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-092	BH2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-093	BH25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-094	BH14	<10	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10
S-095	BH19	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
960-S	BH13	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-097	BH12	<10	ol>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
860-S	BH20	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
660-S	BH17	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-100	D45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-101	MW-1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-102	12	<100d	<100d	<100d	>100d	<100d	>100d	>100d	P001>	<100d	<100d	>100d	<100d	>100d
S-103	BH5S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-104	\mathbb{S}	<10	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10
S-105	2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-106	C	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-107	E5	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10	<10	<10
S-108	BH5D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-109	BH181	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10	<10	<10
S-110	BH32	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-111	BHII	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-112	BH18D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0 1 >	<10	<10
S-113	D70	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10 <10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2-Hexa-	total (µg/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methyl- isobutyl	ketone, total (μg/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Bromo-	form, total (µg/L)	(32.104) < 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100 d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
trans- 1,3-Di- chloro-	propane, total (µg/L)	(34039) <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
ı	Benzene, total (µg/L)	(3 4030)	<10	<10	2,000d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	2,000d	<10	<10	<10	<10	<10	<10	<10	14	<10	<10	<10
1,1,2-Tri- chloro-	ethane, total (µg/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chloro- di- bromo-	methane, total (µg/L)	(32103)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Tri- chloro-	ethlyene, total (µg/L)	(33100) <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis- 1,3-Di- chloro-	propene, total (μg/L)	<10 <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,2-Di- chloro-	propane, total (μg/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	</td <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td><10</td> <td>>100d</td> <td><10</td>	<10	<10	<10	<10	<10	<10	<10	>100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Di- chloro- bromo-	methane, total (µg/L)	(32101) <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	>100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Carbon tetra-	chloride, total (μg/L)	(32102) <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,1,1-Tri- chloro-	ethane, total (µg/L)	(34300) <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Well	105	106	E3	13	122	B8	BHID	BH1S	BH18S	BH2	BH25	BH14	BH19	BH13	BH12	BH20	BH17	D45	MW-1	12	BH5S	\mathbb{S}	2	CI	E5	BH5D	BH18I	BH32	BHII	BH18D	D70
	Sample	S-083	S-084	S-085	980-S	S-087	S-088	680-S	060-S	S-091	S-092	S-093	S-094	S-095	960-S	S-097	860-S	8-099	S-100	S-101	S-102	S-103	S-104	S-105	S-106	S-107	S-108	S-109	S-110	S-111	S-112	S-113

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

i de la companya de			1,1,2,2- Tetra-		Chloro-	Ethyl		
			chloro- ethane	_	benzene, total	benzene, total	Styrene,	Xylene, total
Sample	Well	(µg/L) (34475)	(µg/L) (34516)	(µg/L) (34010)	(µg/L) (34301)	(μ g /L) (34371)	(μg/L) (77128)	(μg/L) (81551)
S-083	105		<10		<10	<10	<10	<10
S-084	106		<10		<10	<10	<10	<10
S-085	E3		<10		<10	<10	<10	<10
980-S	13		<10		<10	99	5e	140
S-087	122		<10		<10	<10	<10	<10
S-088	B8		<10		<10	<10	<10	<10
S-089	BHID		<10		<10	<10	<10	<10
S-090	BHIS		<10		<10	<10	<10	<10
S-091	BH18S		<10		<10	<10	<10	<10
S-092	BH2		<10		<10	<10	<10	<10
S-093	BH25		<10		<10	<10	<10	<10
S-094	BH14		<10		<10	<10	<10	<10
S-095	BH19		<10		<10	<10	<10	<10
960-S	BH13		<10		<10	<10	<10	<10
S-097	BH12		<10		<10	<10	<10	<10
860-S	BH20		<10		<10	<10	<10	<10
S-099	BH17		<10		<10	<10	<10	<10
S-100	D45		<10		<10	<10	<10	<10
S-101	MW-1		<10		<10	<10	<10	<10
S-102	12		<100d		<100d	<100d	<100d	220d
S-103	BH5S		<10		<10	<10	<10	<10
S-104	C3		<10		<10	<10	<10	<10
S-105	2		<10		<10	<10	<10	<10
S-106	CI		<10		<10	<10	<10	<10
S-107	E5		<10		<10	<10	<10	<10
S-108	BHSD		<10		<10	<10	<10	<10
S-109	BH181		<10		<10	<10	<10	<10
S-110	BH32		<10		,<10	<10	<10	<10
S-1111	B H11		<10		<10	<10	<10	<10
S-112	BH18D		<10		<10	<10	<10	<10
S-113	D70		<10		<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

								Carbon	1,1-Di-	1,1-Di-				Methyl-
				Vinyl	Chloro-	Methylene		ė.	chloro-	chloro-	1,2-Di-	Chloro-	1,2-Di-	ethyl-
		Chloro-	Bromo-	chloride,	ethane,	chloride,	Acetone,	sulfide,	ethylene,	ethane,	chloro-	form,	chloro-	ketone,
Sample	Well	(μg/L)	(µg/L)	(μg/L) (39175)	(μg/L)	(µg/L)	(μg/L) (81552)	(μg/L)	(μg/L)	(μg/L)	(μg/L) (45617)	(µg/L)	(µg/L)	(µg/L)
S-114	BH16D	01>	V-10	VI0	01>	<10	01>	<10	<10	<10	<10	<10	01>	<10
S-115	BH16S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-116	D75	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-117	C12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-118	LK13	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
611-S	120	<10	<10	10,000d	<10	<10	<10	<10	99	<10	42,000d	<10	<10	<10
S-120	6SM	<10	<10	<10	<10	<10	<10	<10	<10	<10	10	<10	<10	<10
S-121	WS7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-122	WS2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-123	FILOI	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-124	WSS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-125	FIL04	<10	<10	8e	<10	<10	<10	<10	<10	<10	Se	<10	<10	<10
S-126	FIL05	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-127	FILO2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-128	FILO6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-129	ខ	<10	ot>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

				-io		cis-		Chloro-			trans-			
		1,1,1-Tri-	Carbon	chloro-	1,2-Di-	1,3-Di-	Tri	÷	1,1,2-Tri-		1,3-Di-		Methyl-	
		chloro-	tetra-	bromo-	chloro-	chloro-	chloro-	bromo-	chloro-		chloro-	Bromo-	isobutyl	2-Hexa-
		ethane,	chloride,	methane,	propane,	propene,	ethlyene,	methane,	ethane,	Benzene,	propane,	form,	ketone,	none,
Sample	Well	(µg/L)	(µg/L)	(µg/L)	(μg/L) (34541)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L) (34699)	(µg/L)	(µg/L)	(µg/L)
S-114	BHI6D	(1000) 	×10	<10	×10	×10	<10 <10	×10	×10	<10	×10	01>	V 10	×10
S-115	BH16S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-116	D75	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-117	C12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-118	LK13	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-119	120	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-120	6SM	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-121	WS7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-122	WS2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-123	FILO1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-124	WS5	<10	<10	<10	<10	<10	<10	<10	<10	p006'6	<10	<10	<10	<10
S-125	FILO4	<10	<10	<10	<10	<10	<10	01>	<10	Ξ	<10	ol>	<10	<10
S-126	FILO5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-127	FILO2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-128	FILO6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-129	C2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 20. Concentrations of target volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		letra- chloro-	1,1,2,2- Tetra-		Chloro-	Ethyl		
		ethylene, total	chloro- ethane	Toluene, total	benzene,	benzene, total	Styrene, total	Xylene,
Sample number	Well	(μg/L) (34475)	(μg/L) (34516)	(μg/L) (34010)	(μg/L) (34301)	(μg/L) (34371)	(μg/L) (77128)	(μg/L) (81551)
S-114	BH16D	<10	<10	<10	<10	<10	<10	<10
S-115	BH16S	<10	<10	<10	<10	<10	<10	<10
S-116	D75	<10	<10	<10	<10	<10	<10	<10
S-117	C12	<10	<10	<10	<10	<10	<10	<10
S-118	LK13	<10	<10	<10	<10	<10	<10	<10
S-119	120	<10	<10	10	<10	<10	<10	<10
S-120	6SW	<10	<10	<10	<10	<10	<10	<10
S-121	WS7	<10	<10	<10	<10	<10	<10	<10
S-122	WS2	<10	<10	<10	<10	<10	<10	<10
S-123	FILOI	<10	<10	<10	<10	<10	<10	<10
S-124	WS5	<10	<10	23	<10	330d, e	<10	400d, e
S-125	FILO4	<10	<10	<10	<10	<10	<10	<10
S-126	FILOS	<10	<10	<10	<10	<10	<10	<10
S-127	FILO2	<10	<10	<10	<10	<10	<10	<10
S-128	FILO6	<10	<10	<10	<10	<10	<10	<10
S-129	C	<10	<10	<10	<10	<10	<10	<10

Table 21. Concentrations of tentatively identified volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993 [μ g/L, microgram per liter; n.d., not detected; e, estimated; d, sample was diluted]

Sample number	Well name	Aliphatic hydrocarbon compounds (μg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (µg/L)	Number of aromatic compounds detected	Unknown compounds (µg/L)	Number of unknown compounds detected
S-001	E10	n.d.	0	n.d.	0	n.d.	0
S-002	BH21	n.d.	0	n.d.	0	n.d.	0
S-003	230-58	n.d.	0	n.d.	0	n.d.	0
S-004	E20	n.d.	0	n.d.	0	n.d.	0
S-005	234-142	n.d.	0	n.d.	0	n.d.	0
S-006	D40	25e	3	n.d.	0	n.d.	0
S-007	WP1	n.d.	0	n.d.	0	n.d.	0
S-008	IC	n.d.	0	n.d.	0	n.d.	0
S-009	G-1	n.d.	0	n.d.	0	n.d.	0
S-010	230-128	n.d.	0	n.d.	0	n.d.	0
S-011	BH8	n.d.	0	n.d.	0	n.d.	0
S-012	BH22	n.d.	0	n.d.	0	n.d.	0
S-013	BH33	n.d.	0	n.d.	0	n.d.	0
S-014	E2	n.d.	0	n.d.	0	n.d.	0
S-015	D1	n.d.	0	n.d.	0	n.d.	0
S-016	WP2	n.d.	0	n.d.	0	n.d.	0
S-017	230-24	n.d.	0	n.d.	0	n.d.	0
S-018	D11	n.d.	0	n.d.	0	n.d.	0
S-019	D10	258e	9	n.d.	0	47e	1
S-020	D-5A	n.d.	0	n.d.	0	n.d.	0
S-021	225	n.d.	0	n.d.	0	n.d.	0
S-022	D20	890e, d	5	840e, d	3	180e, d	1
S-023	D21	53e	3	n.d.	0	n.d.	0
S-024	E6	n.d.	0	n.d.	0	n.d.	0
S-025	E7	n.d.	0	n.d.	0	n.d.	0
S-026	24	n.d.	0	n.d.	0	n.d.	0
S-027	25	n.d.	0	n.d.	0	n.d.	0
S-028	W-1A	n.d.	0	n.d.	0	n.d.	0
S-029	BH30	n.d.	0	n.d.	0	n.d.	0
S-030	IT	n.d.	0	n.d.	0	n.d.	0
S-032	I 1	n.d.	0	n.d.	0	n.d.	0
S-033	I13	n.d.	0	n.d.	0	n.d.	0
S-034	I12	n.d.	0	n.d.	0	n.d.	0
S-035	114	n.d.	0	n.d.	0	n.d.	0
S-036	BH31	n.d.	0	n.d.	0	n.d.	0
S-037	D25	n.d.	0	n.d.	0	n.d.	0
S-038	BH29	n.d.	0	n.d.	0	n.d.	0
S-039	BH26	n.d.	0	n.d.	0	n.d.	0

Table 21. Concentrations of tentatively identified volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well name	Aliphatic hydrocarbon compounds (μg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (µg/L)	Number of aromatic compounds detected	Unknown compounds (µg/L)	Number of unknown compounds detected
S-040	237-45	n.d.	0	n.d.	0	n.d.	0
S-041	235-45	n.d.	0	n.d.	0	n.d.	0
S-042	MW-5	n.d.	0	n.d.	0	n.d.	0
S-043	MW-15	n.d.	0	n.d.	0	n.d.	0
S-044	A3	n.d.	0	n.d.	0	n.d.	0
S-045	E1	n.d.	0	n.d.	0	n.d.	0
S-046	A2	n.d.	0	n.d.	0	n.d.	0
S-047	BH27	n.d.	0	n.d.	0	n.d.	0
S-048	B2	n.d.	0	n.d.	0	n.d.	0
S-049	A 1	n.d.	0	n.d.	0	n.d.	0
S-050	A4	n.d.	0	n.d.	0	n.d.	0
S-051	115	17e	1	n.d.	0	n.d.	0
S-052	244-125	n.d.	0	n.d.	0	n.d.	0
S-053	244-65	n.d.	0	n.d.	0	n.d.	0
S-054	BH6	n.d.	0	n.d.	0	n.d.	0
S-055	BH4D	n.d.	0	n.d.	0	n.d.	0
S-056	BH4S	n.d.	0	n.d.	0	n.d.	0
S-057	BH24	n.d.	0	n.d.	0	n.d.	0
S-058	IP	n.d.	0	n.d.	0	n.d.	0
S-059	116	n.d.	0	n.d.	0	n.d.	0
S-060	I21	n.d.	0	n.d.	0	n.d.	0
S-061	BH7I	n.d.	0	n.d.	0	n.d.	0
S-062	BH9S	n.d.	0	n.d.	0	n.d.	0
S-063	BH15	n.d.	0	n.d.	0	n.d.	0
S-064	110	n.d.	0	n.d.	0	6e	1
S-065	BH7S	n.d.	0	n.d.	0	n.d.	0
S-066	BH7D	n.d.	0	n.d.	0	n.d.	0
S-067	19	n.d.	0	n.d.	0	n.d.	0
S-068	18	n.d.	0	n.d.	0	n.d.	0
S-069	В7	n.d.	0	n.d.	0	n.d.	0
S-070	B5	n.d.	0	n.d.	0	n.d.	0
S-071	BH28	n.d.	0	n.d.	0	n.d.	0
S-072	D67	n.d.	0	n.d.	0	n.d.	0
S-073	D68	n.d.	0	n.d.	0	n.d.	0
S-074	C19	88e	5	n.d.	0	120e	5
S-075	C25	n.d.	0	n.d.	0	n.d.	0
S-076	C18	n.d.	0	n.d.	0	18e	1
S-077	B10	n.d.	0	n.d.	0	n.d.	0

Table 21. Concentrations of tentatively identified volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well name	Aliphatic hydrocarbon compounds (μg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (μg/L)	Number of aromatic compounds detected	Unknown compounds (μg/L)	Number of unknown compounds detected
S-078	В3	n.d.	0	n.d.	0	n.d.	0
S-079	A20	n.d.	0	n.d.	0	n.d	0
S-080	W-3	n.d.	0	n.d.	0	n.d.	0
S-081	BH23	n.d.	0	n.d.	0	n.d.	0
S-082	232-45	n.d.	0	n.d.	0	n.d.	0
S-083	105	n.d.	0	n.d.	0	n.d.	0
S-084	106	n.d.	0	n.d.	0	n.d.	0
S-085	E3	n.d.	0	n.d.	0	n.d.	0
S-086	13	n.d.	0	n.d.	0	n.d.	0
S-087	I22	n.d.	0	n.d.	0	n.d.	0
S-088	B8	n.d.	0	n.d.	0	n.d.	0
S-089	BH1D	n.d.	0	n.d.	0	n.d.	0
S-090	BH1S	n.d.	0	n.d.	0	n.d.	0
S-091	BH18S	n.d.	0	n.d.	0	n.d.	0
S-092	BH2	n.d.	0	n.d.	0	n.d.	0
S-093	BH25	n.d.	0	n.d.	0	n.d.	0
S-094	BH14	n.d.	0	n.d.	0	n.d.	0
S-095	BH19	n.d.	0	n.d.	0	n.d.	0
S-096	BH13	n.d.	0	n.d.	0	n.d.	0
S-097	BH12	n.d.	0	14e	1	n.d.	0
S-098	BH20	n.d.	0	n.d.	0	n.d.	0
S-099	BH17	n.d.	0	n.d.	0	n.d.	0
S-100	D45	n.d.	0	n.d.	0	n.d.	0
S-101	MW-1	n.d.	0	n.d.	0	n.d.	0
S-102	12	n.d.	0	n.d.	0	n.d.	0
S-103	BH5S	n.d.	0	n.d.	0	n.d.	0
S-104	C3	n.d.	0	n.d.	0	n.d.	0
S-105	C4	n.d.	0	n.d.	0	n.d.	0
S-106	C1	n.d.	0	n.d.	0	n.d.	0
S-107	E5	n.d.	0	n.d.	0	n.d.	0
S-108	BH5D	5e	1	n.d.	0	n.d.	0
S-109	BH18I	n.d.	0	n.d.	0	n.d.	0
S-110	BH32	n.d.	0	n.d.	0	n.d.	0
S-111	BH11	n.d.	0	n.d.	0	n.d.	0
S-112	BH18D	n.d.	0	n.d.	0	n.d.	0
S-113	D70	n.d.	0	n.d.	0	n.d.	0
S-114	BH16D	n.d.	0	n.d.	0	n.d.	0
S-115	BH16S	n.d.	0	n.d.	0	n.d.	0

Table 21. Concentrations of tentatively identified volatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well name	Aliphatic hydrocarbon compounds (μg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (μg/L)	Number of aromatic compounds detected	Unknown compounds (µg/L)	Number of unknown compounds detected
S-116	D75	n.d.	0	n.d.	0	n.d.	0
S-117	C12	n.d.	0	n.d.	0	n.d.	0
S-118	LK13	n.d.	0	n.d.	0	n.d.	0
S-119	120	n.d.	0	n. d .	0	n.d.	0
S-120	WS9	n.d.	0	n.d.	0	n.d.	0
S-121	WS7	n.d.	0	n.d.	0	n.d.	0
S-122	WS2	n.d.	0	n.d.	0	n.d.	0
S-123	FILO1	n.d.	0	n.d.	0	n.d.	0
S-124	WS5	26e	1	n.d.	0	n.d.	0
S-125	FILO4	n.d.	0	n.d.	0	186e	4
S-126	FILO5	n.d.	0	n.d.	0	32e	1
S-127	FILO2	n.d.	0	n.d.	0	n.d.	0
S-128	FILO6	n.d.	0	n.d.	0	n.d.	0
S-129	C2	n.d.	0	n.d.	0	n.d.	0

¹⁴⁰ Ground-Water Quality in the Calumet Region of Northwestern Indiana and Northeastern Illinois

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993 [µg/L, microgram per liter; <, less than; e, estimated; d, sample was diluted; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

2-2'- Ortho oxybis cresol, 1-Chloro total propane		o- Ortho Chloro- cresol, benzene total	1,4-Di- o- Ortho chloro- Chloro- Chloro- cresol, benzene benzene total	1,3-Di- 1,4-Di- o- Ortho chloro- chloro- Chloro- cresol, benzene benzene total
(μg/L) (77152)	(μg/L) (34536)	(µg/L) (µg/L) (34571) (34536)	(µg/L) (µg/L) (µg/L) (34566) (34571) (34536)	(µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (34586) (3456) (34571) (34536)
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10	<10	<10	<10 <10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10	<10	<10	<10 <10	<10 <10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10		<10 <10	<10 <10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10 <10
<10		<10 <10	<10 <10 <10	<10 <10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<100d	<pre><100d <100d <100</pre>	<pre>p001></pre>	<100d <100d	<100d <100d <100d
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<10	<10 <10 <1(<10	<10 <10	<10 <10 <10
<10	<10 <10 <10	<10	<10 <10	<10 <10 <10
<10	<10 <10 <1	<10	<10 <10	<10 <10 <10
<10	<10 <10 <1	<10	<10 <10	<10 <10 <10
<10	<10 <10 <1	<10	<10 <10	<10 <10 <10
<10	<10 <10 <	<10 <10	<10	017 017

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2- Chloro- naph- 2- thalene, Nitro- total aniline (μg/L) (μg/L) (34581) (30195)
2,4,5- Tri- chloro- phenol, total (µg/L) (77687)
2,4,6- Tri- chloro- phenol, total (µg/L) (34621)
Hexa- chloro- cyclo- pent- adiene, total (μg/L)
2- Methyl naph- thalene (μg/L)
Para- chloro- meta cresol, total (μg/L) (34452)
Hexa- chloro- buta- diene (μg/L)
4- Chloro- aniline (μg/L) (30343)
Naphth- alene, total (μg/L) (34696)
1,2,4- Tri- chloro- benzene (μg/L) (34551)
2,4-Di- chloro- phenol, total (μg/L) (34601)
Bis(2- chloro- ethoxy) methane, total (μg/L) (34278)
2,4-Di- methyl- phenol, total (µg/L) (34606)
Well

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2,6-Di- nitro- i, toluene, an total ((4g/L) (
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10
<10
<10
<10
<10 <10 <25
<100d <100d <250d
<10 <10 <25
<10
<10 5e <25
<10 <10 <25
<10 <10 <25
<10 <10 <25
<10 <10 <25

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Same Barbaran Barbaran	Weil	N-Nitro- sodi- phenyl amine, total	4- Bromo- phenyl phenyl ether, total (μα/L)	Hexa- chloro- benzene, total (uq/L)	Penta- chloro- phenol, total (uq/L)	Phenan- threne, total (μα/L)	Anthra- cene, total (μq/L)	Carba- zole (μg/L)	Di-N- butyl phthal- ate, total (μq/L)	Fluor- anthene, total (μq/L)	Pyrene, total (μq/L)	N- Butyl benzyl phthal- ate, total (μq/L)	3,3' - Di- chloro- benzi- dine, total (ug/L)	Benzo(a) anthra- cene, total (uq/L)	Chry- sene, total (μα/L)	Bis(2- ethyl- hexyl) phthal- ate, total
number	name	(34433)	(34636)	(39700)	(39032)	(34461)	(34220)	1	(39110)	(34376)	(34469)	(34292)	(34631)	(34526)	(34320)	(39100)
S-001	E10	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10e
S-002	BH21	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-003	230-58	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1e
S-004	E20	<10	01>	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	9 9.
S-005	234-142	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
900-S	D40	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-007	WP1	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-008	IC	<10	<10	<10	<25	<10	<10	<10	2e	<10	<10	<10	<10	<10	<10	<10
8-000	G-1	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-010	230-128	<10	<10	<10	<25	<10	<10	<10	.5e	<10	<10	<10	<10	<10	<10	<10
S-011	BH8	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-012	BH22	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<u> </u>	<10	<10	<10	<10
S-013	BH33	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.7e
S-014	E2	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	2e
S-015	DI	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-016	WP2	<10	<10	<10	<25	<10	<10	<10	.ee	<10	<10	<10	<10	<10	<10	<10
S-017	230-24	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-018	D11	<10	<10	<10	<25	<10	<10	<10	.8e	<10	<10	<10	<10	<10	<10	4e
S-019	D10	>100d	<100d	<100d	<250d	>100d	<100d	<100d	<100d	<100d	<100d	<100d	<100d	<100d	<100d	P001>
S-020	D-5A	<10	<10	<10	<25	0I>	<10	<10	<10	<10	<10	<10	<10	<10	<10	.ee
S-021	225	<10	<10	<10	<25	<10	<10	<10	<10	<10	OI>	<10	<10	<10	<10	<10
S-022	D20	<10	<10	<10	<25	le	<10	<10	<10	<10	<10	<10	<10	<10	<10	le
S-023	D21	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<u>-</u>
S-024	E6	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	6e
S-025	E7	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-026	24	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Di-n- octvl	Benzo(b)	Benzo(k)		Indeno (1,2,3-	1,2,5,6- Dibenz-	
		phthal-	fluoran-	fluoran-	Benzo(a)	(po	anthra-	Benzo(g,h,i)
		, ate,	thene,	thene,	pyrene,	pyrene,	cene,	perylene,
	;	total	total	total	total	total	total	total
Sample number	Well	(µg/L) (34596)	(µg/L) (34230)	(μg/L) (34242)	(μg/L) (34247)	(μg/L) (34403)	(μg/L) (34556)	(μg/L) (34521)
S-001	E10	<10	<10	<10	<10	<10	<10	<10
S-002	BH21	<10	<10	<10	<10	<10	<10	<10
S-003	230-58	<10	<10	<10	<10	<10	<10	<10
S-004	E20	<10	<10	<10	<10	<10	<10	<10
S-005	234-142	<10	<10	<10 .	<10	<10	<10	<10
900-S	D40	<10	<10	<10	<10	<10	<10	<10
S-007	WPI	<10	<10	<10	<10	<10	<10	<10
S-008	IC	<10	<10	<10	<10	<10	<10	<10
S-009	G-1	<10	<10	<10	<10	<10	<10	<10
S-010	230-128	<10	<10	<10	<10	<10	<10	<10
S-011	BH8	<10	<10	<10	<10	<10	<10	<10
S-012	BH22	<10	<10	<10	<10	<10	<10	<10
S-013	BH33	<10	<10	<10	<10	<10	<10	<10
S-014	E2	<10	<10	<10	<10	<10	<10	<10
S-015	D1	<10	<10	<10	<10	<10	<10	<10
S-016	WP2	<10	<10	<10	<10	<10	<10	<10
S-017	230-24	<10	<10	<10	<10	<10	<10	<10
S-018	DII	<10	<10	<10	<10	<10	<10	<10
S-019	D10	P00I>	P001>	>100d	<100d	<100d	<100d	<100d
S-020	D-5A	<10	<10	<10	<10	<10	<10	<10
S-021	225	<10	<10	<10	<10	<10	<10	<10
S-022	D20	<10	<10	<10	<10	<10	<10	<10
S-023	D21	<10	<10	<10	<10	<10	<10	<10
S-024	E6	<10	<10	<10	<10	<10	<10	<10
S-025	E7	<10	<10	<10	<10	<10	<10	<10
S-026	24	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Ortho oxybis cresol, 1-Chloro- e total propane (µg/L) (µg/L)	chloro- chloro- chloro- chloro- (1971) (34571) (34571) (100 (100 (100 (100 (100 (100 (100 (1	1,3-Di- 1,4-Di- chloro- chloro- benzene benzene (µg/L) (µg/L) (34566) (34571) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	2- 1,3-Di- 1,4-Di- 1,4-Di- total benzene benzene benzene benzene benzene total benzene benzen benzene benzene benzene benzene benzene benzene benzene benzen benzen benzen benzen benzene benzene benzene benzene benzen ben	2- 1,3-Di- 1,4-Di- phenol, chloro- chloro- total benzene benzene (µg/L) (µg/L) (µg/L) (34586) (34566) (34571) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Phenols, ether, phenol, total 2- 1,3-Di-toro-thoro
(μg/L) (34536) <10 <10 <10 <10 <10 <10		(Hg/L) (34566) (34566) (34566) (310 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	(µg/L) (µg/L) (34586) (34566) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	(µg/L) (µg/L) (µg/L) (34273) (34586) (34566) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	(µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (32730) (34273) (34586) (34566) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
01V 01V 01V	ı	 C 0 C 0<	 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
<pre><!--ul--> < 10 < 10 < 10 </pre>		 C 0 C 0<	 <10 <10	 <10 	<10
<pre><!-- <! The state</td--><td></td><td> C 0 C 0<</td><td> <10 <10</td><td> <10 <10 </td><td><10</td> <10</pre>		 C 0 C 0<	 <10 <10	 <10 <10 	<10
<10	ı	 C 0 C 0<	 <10 	<10	<10
0 <10			010 010 010 010 010 010 010	 < < < <!--</td--><td><10</td> <10	<10
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 <	<10
0			<pre></pre>	 <10 	<10
0			<pre></pre>	 <10 	<10
0	ı	<10<10<10<10<10<10	<pre><10 <10 <10 <10</pre>	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <</pre>	23 <10
0	1	C 0C 0C 0C 0C 0	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	<pre><!--0 <!0 <!0 <!0 <!0 <!0 <!0 <!0 <!0 <!0</td--><td><10</td> <10</pre>	<10
	1	<10 <10 <10	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	<10
0	ı	<10 - <10 <10	<10<10<10	<10 <10 <10 <10 <10	<10
0		<10	<10 <10	<10 <10 <10	<pre><10 <10 <10 <10 <10 <10</pre>
0					<10 <10 <10 <10
0			<10	<10 <10	
<10 <10 <10	0	<10 <10		<10	<10 <10
<10 <10 <10		<10 <10	<10	<10 <10	<10 <10 <10
<10 <10 <10		<10 <10	<10	<10 <10	<10 <10 <10
<10 <10 <10	0	<10 <10		<10	<10 <10
<10 <10 <10		<10 <10	<10	<10 <10	<10 <10 <10
10 <10 <10	0 <1	<10 <10 <	<10	<10 <10	<10 <10 <10
10 <10 <10	0	<10 <10 <	<10	<10 <10	<10 <10 <10
10 <10 <10	0	<10 <10 <	<10	<10 <10	<10 <10 <10
<10 <10 <10		<10 <10 <	<10	<10 <10	<10 <10 <10
<10 <10 <10		<10 <10 <	<10	<10 <10	<10 <10 <10
<10 <10 <10		<10 <10 <	<10	<10 <10 <10 <10	<10 <10 <10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		24.0	Bis(2-	2 A.Di.	194.			Hove	Para-	ď	Hexa- chloro-	2,4,6- Tri-	2,4,5- Tri-	2- Chloro	
		z,4-Df- methyl- phenol, total	ethoxy) methane, total	chloro- phenol, total	Tri- Chloro- benzene	Naphth- alene, total	4- Chloro- aniline	chloro- buta- diene	meta cresol, total	Methyl naph- thalene	pent- adiene, total	chloro- phenol, total	chloro- phenol, total	naph- thalene, total	2- Nitro- aniline
Sample number	Well	(μg/L) (34606)	(μg/L) (34278)	(μg/L) (34601)	(μg/L) (34551)	(μg/L) (34696)	(μg/L) (30343)	(μg/L) (34391)	(μg/L) (34452)	(μg/L) (30194)	(μg/L) (34386)	(μg/L) (34621)	(µg/L) (77687)	(μg/L) (34581)	(μg/L) (30195)
S-027	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-028	W-1A	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-029	BH30	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-030	П	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-032	=	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-033	113	<10	<10	<10	<10	<10	<10	<10	<10	2e	<10	<10	<25	<10	<25
S-034	112	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-035	114	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-036	BH31	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-037	D25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-038	BH29	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-039	BH26	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-040	237-45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-041	235-45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-042	MW-5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-043	MW-15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-044	A3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-045	E1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-046	A2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-047	BH27	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-048	B2	Зе	<10	<10	<10	2e	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-049	Α1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-050	A4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-051	115	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-052	244-125	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Di- methyl phthal- ate, total (μg/L)	Ace- napth- ylene, total (μg/L)	2,6-Di- nitro- toluene, total (μg/L)	3- Nitro- aniline, total (μg/L)	Ace- naphth- ene, total (μg/L)	2,4-Di- nitro- phenol, total (µg/L)	4- Nitro- phenol, total (μg/L)	Di- benzo- furan, total (μg/L)	2,4-Dinitro- toluene, total (μg/L)	Diethyl phthal- ate, total (μg/L)	4- Chloro- phenyl phenyl ether, total (μg/L)	Fluor- ene, total (μg/L)	4- Nitro- aniline (μq/L)	2- Methyl 4,6-Di- nitro- phenol (μg/L)
number	name	(34341)	(34200)	(34626)	(78300)	(34205)	(34616)	(34646)	(81302)	(34611)	(34336)	(34641)	(34381)	(30196)	(30204)
S-028	W-1A	01>	01×	0l>	\$ 55	<15 <10 <10	55	3 8	01>	017	017	<10	01>	<25	<25
S-029	BH30	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-030	II	<10	<10	<10	<25	<10	\$2	<25	<10	<10	<10	<10	<10	<25	<25
S-032	П	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-033	113	<10	Ie	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-034	112	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-035	114	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-036	BH31	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-037	D25	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-038	BH29	<10	<10	<10	425	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-039	BH26	<10	<10	<10	\$\$	<10	<25	- <25	<10	<10	<10	<10	~<10	<25	<25
S-040	237-45	<i0< td=""><td><10</td><td><10</td><td>25</td><td><10</td><td><25</td><td><25</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><25</td><td><25</td></i0<>	<10	<10	25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-041	235-45	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-042	MW-5	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-043	MW-15	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-044	A3	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-045	El	<10	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-046	A2	<10	<10	<10	\$25	<10	425	<25	<10	<10	<10	<10	<10	<25	<25
S-047	BH27	<10	<10	<10	\$	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-048	B2	<10	<10	<10	<25	.5e	\$25	<25	.ee	<10	<10	<10	Ie	<25	<25
S-049	ΑI	2e	<10	<10	<25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-050	A4	2e	<10	<10	<25	<10	425	<25	<10	<10	<10	<10	<10	<25	<25
S-051	115	<10	<10	<10	\$25	<10	<25	<25	<10	<10	<10	<10	<10	<25	<25
S-052	244-125	<10	<10	<10	<25	<10	425	<25	<10	<10	<10	<10	<10	<25	<25

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Di-n- octyl phthal-	Benzo(b) fluoran-	Benzo(k) fluoran- thene	Benzo(a)	Indeno (1,2,3- cd)	1,2,5,6- Dibenz- anthra-	Benzo(g,h,i)
Sample number	Well	ate, total (μg/L) (34596)	total (μg/L) (34230)	total (μg/L) (34242)	pyrene, total (μg/L) (34247)	pyrene, total (μg/L) (34403)	total (μg/L) (34556)	total (μg/L) (34521)
S-027	25	<10	<10	<10	<10	<10	<10	<10
S-028	W-1A	<10	<10	<10	<10	<10	<10	<10
S-029	BH30	<10	<10	<10	<10	<10	<10	<10
S-030	IT	<10	<10	<10	<10	<10	<10	<10
S-032	п	<10	<10	<10	<10	<10	<10	<10
S-033	113	<10	<10	<10	<10	<10	<10	<10
S-034	112	<10	<10	<10	<10	<10	<10	<10
S-035	114	<10	<10	<10	<10	<10	<10	<10
S-036	BH31	<10	<10	<10	<10	<10	<10	<10
S-037	D25	<10	<10	<10	<10	<10	<10	<10
S-038	BH29	<10	<10	<10	<10	<10	<10	<10
S-039	BH26	<10	<10	<10	<10	<10	<10	<10
S-040	237-45	<101>	<10	<10	<10	<10 -	<10	<10
S-041	235-45	<10	<10	<10	<10	<10	<10	<10
S-042	MW-5	<10	<10	<10	<10	<10	<10	<10
S-043	MW-15	<10	<10	<10	<10	<10	<10	<10
S-044	A3	<10	<10	<10	<10	<10	<10	<10
S-045	EI	<10	<10	<10	<10	<10	<10	<10
S-046	A2	<10	<10	<10	<10	<10	<10	<10
S-047	BH27	<10	<10	<10	<10	<10	<10	<10
S-048	B2	<10	<10	<10	<10	<10	<10	<10
S-049	AI	<10	<10	<10	<10	<10	<10	<10
S-050	A4	<10	<10	<10	<10	<10	<10	<10
S-051	115	<10	<10	<10	<10	<10	<10	<10
S-052	244-125	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well	Phenols, total (μg/L) (32730)	Bis(2- Chloro- ethyl) ether, total (µg/L) (34273)	2- phenol, total (μg/L) (34586)	1,3-Di- chloro- benzene (µg/L) (34566)	1,4-Di- chloro- benzene (μg/L) (34571)	ο- Chloro- benzene (μg/L) (34536)	Ortho cresol, total (µg/L) (77152)	2-2·- oxybis 1-Chloro- propane (µg/L)	Para cresol, total (μg/L) (77146)	N- Nitro- sodi-N- propyl- amine, total (µg/L) (34428)	Hexa- chloro- ethane, total (µg/L) (34396)	Nitro- benzene, total (µg/L) (34447)	lso- phorone, total (µg/L) (34408)	2- Nitro- phenol, total (μg/L) (34591)
S-053	244-65	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-054	BH6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-055	BH4D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-056	BH4S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-057	BH24	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-058	IP	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-059	116	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
090-S	121	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-061	BH71	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-062	S6H8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-063	BH15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-064	110	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-065	BH7S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
990-S	BH7D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-067	61	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
890-S	18	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
690-S	B7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-070	B5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-071	BH28	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-072	D67	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-073	D68	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-074	C19	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-075	C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
9 - 018	C18	.8e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-077	B10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2- Nitro- aniline (μg/L) (30195)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	425	\$ 25	<25	<25	<25	<25	<25	<25
2- Chloro- naph- thalene, total (μg/L) (34581)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2,4,5- Tri- chloro- phenol, total (μg/L) (77687)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
2,4,6- Tri- chloro- phenol, total (µg/L) (34621)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hexa- chloro- cyclo- pent- adiene, total (µg/L) (34386)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2- Methyl naph- thalene (μg/L) (30194)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Para- chloro- meta cresol, total (µg/L) (34452)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hexa- chloro- buta- diene (µg/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	- <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
4- Chloro- aniline (µg/L) (30343)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	- <10 -	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Naphth- alene, total (µg/L) (34696)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.5e	<10	<10	<10	<10	<10	<10	<10	<10	<10	.8e	<10	<10	<10
1,2,4- Tri- chloro- benzene (µg/L) (34551)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2,4-Di- chloro- phenol, total (µg/L) (34601)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Bis(2- chloro- ethoxy) methane, total (µg/L) (34278)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2,4-Di- methyl- phenol, total (µg/L) (34606)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Well	244-65	BH6	BH4D	BH4S	BH24	IP	116	121	BH71	BH9S	BH15	110	BH7S	BH7D	61	81	B7	B5	BH28	L9Q	89Q	C19	C25	C18	B10
Sample	S-053	S-054	S-055	S-056	S-057	S-058	S-059	S-060	S-061	S-062	S-063	S-064	S-065	990-S	L90-S	890-S	690-S	S-070	S-071	S-072	S-073	S-074	S-075	920-S	S-077

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2- Methyl 4- 4,6-Di- Nitro- nitro- aniline phenol (μg/L) (μg/L) (30204)	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	
Fluor- ene, Ni total an (μg/L) (μ (34381) (36	<10	<10	<10	<10	<10	<10	<10 ×	<10	<10	<10	<10	<10 	<10 	<10	<10	<10 	<10	<10	<10	<10	<10	<10	<10	
4- Chlorophenyl phenyl phenyl ether, total (μg/L) (34641)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Diethyl phthal- ate, total (µg/L) (34336)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
2,4-Dinitro- nitro- toluene, total (µg/L) (34611)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Di- benzo- furan, total (µg/L) (81302)	<10	<10	<10	<10	<10	<10	<10	<10	ol>	<10	<10	<10	<10	OI>	<10	<10	<10	<10	<10	<10	<10	<10	<10	
4- Nitro- phenol, total (μg/L) (34646)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	225	<25	<25	<25	<25	<25	<25	<25	
2,4-Di- nitro- phenol, total (μg/L) (34616)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
Acenaphthene, total (μg/L) (34205)	<i0< td=""><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td></td></i0<>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
3- Nitro- aniline, total (µg/L) (78300)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
2,6-Di- nitro- toluene, total (μg/L) (34626)	<10	<10	oI>	<i0< td=""><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td></td></i0<>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Acenapth- ylene, total (μg/L) (34200)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Di- methyl phthal- ate, total (μg/L) (34341)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Well	244-65	BH6	BH4D	BH4S	BH24	IP	911	121	BH7I	BH9S	BH15	110	BH7S	BH7D	61	81	B7	B5	BH28	D67	D68	6ID	C25	
Sample	S-053	S-054	S-055	S-056	S-057	S-058	S-059	090-S	S-061	S-062	S-063	S-064	S-065	990-S	2-067	890-S	690-S	S-070	S-071	S-072	S-073	S-074	S-075	

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		N-Nitro- sodi-	4- Bromo- phenyl	Hexa-	Penta-				Di-N- butyi			N-Butyl benzyl	3,3'- Di- chloro-	Benzo(a)		Bis(2- ethyl- hexyl)
	Well	phenyl amine, total (µg/L) (34433)	phenyl ether, total (μg/L) (34636)	chloro- benzene, total (μg/L) (39700)	chloro- phenol, total (µg/L) (39032)	Phenan- threne, total (µg/L) (34461)	Anthra- cene, total (μg/L) (34220)	Carba- zole (μg/L)	phthal- ate, total (μg/L) (39110)	Fluor- anthene, total (µg/L) (34376)	Pyrene, total (μg/L) (34469)	phthai- ate, total (μg/L) (34292)	benzi- dine, total (μg/L) (34631)	anthra- cene, total (μg/L) (34526)	Chry- sene, total (µg/L) (34320)	phthal- ate, total (µg/L) (39100)
1	244-65	<10	<10	<10	<25	<10	<10	<10	v 10	<10	<10	<10	<10	<10	<10	<10
	BH6	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.7e
	BH4D	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	BH4S	<10	<10	<10	<25	o!>	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	BH24	<10	<10	<10	<25	<10	01>	<10	9e	<10	<10	<10	<10	<10	<10	<10
	IP	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	116	<10	<10	<10	<25	<10	<10	<10	.7e	<10	<10	<10	<10	<10	<10	.7e
	121	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	BH7I	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10
	S6H8	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	BH15	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1e
	110	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	BH7S	01∨	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	01>
	BH7D	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	61	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	~10	<10	<10	<10
	81	<10	<10	<10	<25	<10	<10	<10	.8e	<10	<10	<10	<10	<10	<10	<10
	B7	<10	~10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	B5	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	BH28	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	D67	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	D68	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	C19	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	C25	<10	<10	<10	<25	<10	<10	<10	<10	ol>	<10	<10	<10	<10	<10	<10
	C18	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	B10	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Di-n- octyl phthal- ate, total (μg/L) (34596)	Benzo(b) fluoran- thene, total (μg/L) (34230)	Benzo(k) fluoran- thene, total (μg/L) (34242)	Benzo(a) pyrene, total (µg/L) (34247)	Indeno (1,2,3- cd) pyrene, total (μg/L) (34403)	1,2,5,6- Dibenz- anthra- cene, total (µg/L) (34556)	Benzo(g,h,i) perylene, total (µg/L) (34521)
S-053	244-65	<10	<10	<10	<10	<10	<10	<10
S-054	BH6	<10	<10	<10	<10	<10	<10	<10
S-055	BH4D	<10	<10	<10	<10	<10	<10	<10
S-056	BH4S	<10	<10	<10	<10	<10	<10	<10
S-057	BH24	<10	<10	<10	<10	<10	<10	<10
S-058	IP	<10	<10	<10	<10	<10	<10	<10
S-059	116	<10	<10	<10	<10	<10	<10	<10
090-S	121	<10	<10	<10	<10	<10	<10	<10
S-061	BH7I	<10	<10	<10	<10	<10	<10	<10
S-062	BH9S	<10	<10	<10	<10	<10	<10	<10
S-063	BH15	<10	<10	<10	<10	<10	<10	<10
S-064	110	<10	<10	<10	<10	<10	<10	<10
S-065	BH7S	<10	<10	<10	<10	<10	<10	<10
990-S	BH7D	<10	<10	<10	<10	<10	<10	<10
2-067	61	<10	<10	<10	<10	<10	<10	<10
890-S	81	<10	<10	<10	<10	<10	<10	<10
690-S	B7	<10	<10	<10	<10	<10	<10	<10
S-070	B5	<10	<10	<10	<10	<10	<10	<10
S-071	BH28	<10	<10	<10	<10	<10	<10	<10
S-072	L9Q	<10	<10	<10	<10	<10	<10	<10
S-073	89Q	<10	<10	<10	<10	<10	<10	<10
S-074	C19	<10	<10	<10	<10	<10	<10	<10
S-075	C25	<10	<10	<10	<10	<10	<10	<10
920-S	C18	<10	<10	<10	<10	<10	<10	<10
S-077	B10	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

			Bis(2-						2-2'-		N- Nitro-				c
Sample number	Well	Phenols, total (μg/L) (32730)	ethyl) ether, total (µg/L) (34273)	2- phenol, total (μg/L) (34586)	1,3-Di- chloro- benzene (µg/L) (34566)	1,4-Di- chloro- benzene (µg/L) (34571)	o- Chloro- benzene (µg/L) (34536)	Ortho cresol, total (µg/L) (77152)	oxybis 1-Chloro- propane (μg/L)	Para cresol, total (µg/L) (77146)	sodi-N- propyl- amine, total (µg/L) (34428)	nexa- chloro- ethane, total (µg/L) (34396)	Nitro- benzene, total (µg/L) (34447)	Iso- phorone, total (μg/L) (34408)	2- Nitro- phenol, total (μg/L) (34591)
S-078 B	B3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-079 A	A20	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
N 080-S	W-3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-081 B	BH23	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-082 2	232-45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-083	105	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-084	901	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-085 E	E3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-086 I.	13	34	<10	<10	<10	<10	<10	12	<10	22	<10	<10	<10	<10	<10
S-087 Ľ	122	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-088 B	B8	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-089 B	BH1D	2e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-090 B	BHIS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-091 E	BH18S	<10	<10	<10	01>	<10	<10	<10	<10	<10	_ <10_	<10	<10	<10	<10
S-092 B	BH2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-093 E	BH25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-094 B	BH14	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-095 B	BH19	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-096 E	BH13	<10	<10	<10	<10	4e	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-097 E	BH12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-098 E	BH20	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-099 E	BH17	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-100 L	D45	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-101 N	MW-1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-102 I	12	1,600d	<10	<10	<10	<10	<10	550d	<10	1,400d	<10	<10	<10	<10	<10
S-103 E	BH5S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-104 C	C3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-105 C	C 4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

oro- oh- 2- one, Nitro- al aniline /L) (μg/L)	0 <25	0 <25	0 <25	0 <25	.0 <25	0 <25	10 <25	(0 <25	10 <25	10 <25	10 <25	10 <25	10 <25	10 <25	10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	<10 <25	7.0
2,4,5- 2- Tri- Chloro- chloro- naph- phenol, thalene, total total (µg/L) (µg/L) (77687) (34581)	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	<25 <1	1,
2,4,6- 2,4,5- Tri- Tri- chloro- chloro- phenol, phenol, total total (μg/L) (μg/L) (34621) (77687)	<10 <	<10 <	<10 <	<10	<10 <	<10 <	<10 <	<10 <	<10 <	<10 <	<10 <	<10	<10 <	<10 <	<10 <	<10 <	<10 <	<10 <	<10	<10	<10 <	<10	> 01>	> 01>	<10	<10	<10	,
Hexa- chloro- cyclo- pent- adiene, p total (µg/L) (34386) (<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	,
2- Methyl naph- thalene (µg/L) (30194)	<10	<10	<10	<10	<10	<10	<10	<10	99	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	22e,d	<10	<10	•
Para- chloro- meta cresol, total (µg/L) (34452)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	•
Hexa- chloro- buta- diene (µg/L) (34391)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	91,
4- Chloro- aniline (µg/L) (30343)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7
Naphth- alene, total (µg/L) (34696)	<10	<10	<10	<10	<10	<10	<10	<10	180d	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1,200d	<10	<10	· ·
1,2,4- Tri- chloro- benzene (µg/L) (34551)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	(1)
2,4-Di- chloro- phenol, total (µg/L) (34601)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7
Bis(2- chloro- ethoxy) methane, total (µg/L) (34278)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	710
2,4-Di- methyl- phenol, total (μg/L) (34606)	<10	<10	<10	<10 .	<10	<10	<10	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	909E	<10	<10	7
Well name	B3	A20	W-3	BH23	232-45	105	106	E3	13	122	B8	BH1D	BH1S	BH18S	BH2	BH25	BH14	BH19	BH13	BH12	BH20	BH17	D45	MW-1	12	BH5S	\mathbb{S}	č
Sample	S-078	S-079	S-080	S-081	S-082	S-083	S-084	S-085	980-S	S-087	S-088	S-089	060-S	S-091	S-092	S-093	S-094	S-095	960-S	S-097	860-S	S-099	S-100	S-101	S-102	S-103	S-104	0

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2- Methyl 4,6-Di- nitro- phenol (µg/L) (30204)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	25	<25	<25	<25	<25	425
4- Nitro- aniline (μg/L) (30196)	<25	<25	425	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Fluor- ene, total (μg/L) (34381)	<10	<10	<10	<10	<10	<10	<10	<10	le	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	15	<10	<10	<10
4- Chloro- phenyl phenyl ether, total (μg/L) (34641)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Diethyl phthal- ate, total (μg/L) (34336)	<10	.6e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.9e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2,4-Dinitro- nitro- toluene, total (μg/L) (34611)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Di- benzo- furan, total (μg/L) (81302)	<10	<10	<10	<10	<10	<10	<10	<10	1e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	13	<10	<10	<10
4- Nitro- phenol, total (μg/L) (34646)	<25	<25	<25	25	425	<25	<25	425	<25	<25	<25	<25	425	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
2,4-Di- nitro- phenol, total (µg/L) (34616)	<25	<25	<25	<25	<25	<25	<25	<25	425	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Ace- naphth- ene, total (μg/L) (34205)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3- Nitro- aniline, total (µg/L) (78300)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
2,6-Dinitronitronitronitronitronitronitronitr	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acenapthylene, ylene, total (µg/L) (34200)	<10	<10	<10	<10	<10	<10	<10	<10	4e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	36e,d	<10	<10	<10
Di- methyl phthal- ate, total (μg/L) (34341)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Well	B3	A20	W-3	BH23	232-45	105	106	E3	13	122	B8	BH1D	BH1S	BH18S	BH2	BH25	BH14	BH19	BH13	BH12	BH20	BH17 ·	D45	MW-1	12	BH5S	\mathbb{S}	C4
Sample	S-078	S-079	S-080	S-081	S-082	S-083	S-084	S-085	980-S	S-087	S-088	S-089	060-S	S-091	S-092	S-093	S-094	S-095	960-S	S-097	S-098	S-099	S-100	S-101	S-102	S-103	S-104	S-105

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

I	N-Nitro- sodi- phenyl amine,	4- Bromo- phenyl phenyl ether,	Hexa- chloro- benzene,	Penta- chloro- phenol,	Phenan- threne,	Anthra- cene,	Carba-	Di-N- butyl phthal- ate,	Fluor- anthene,	Pyrene,	N-Butyl benzyl phthal- ate,	3,3'- Di- chloro- benzi- dine,	Benzo(a) anthra- cene,	Chry- sene,	Bis(2- ethyl- hexyl) phthal- ate,
total (µg/L) (34433)		total (µg/L) (34636)	ισίαι (μg/L) (39700)	ισια! (μg/L) (39032)	(µg/L) (34461)	ω(μg/L) (34220)	(μg/L)	(μg/L) (39110)	(μg/L) (34376)	(μg/L) (34469)	(µg/L) (34292)	(μg/L) (34631)	(μg/L) (34526)	(μg/L) (34320)	(µg/L) (39100)
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	.6e	<10	<10	<10	<10	<10	<10	<10	<10	<10	Зе
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	.8e	<10	Зе	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	425	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	14	2e	18	<10	2e	2e	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ol>
<10		<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	phthal- ate, total (μg/L) (34596)	fluoran- thene, total (μg/L) (34230)	fluoran- thene, total (μg/L) (34242)	Benzo(a) pyrene, total (μg/L) (34247)	cd) pyrene, total (μg/L) (34403)	anthra- cene, total (ug/L) (34556)	Benzo(g,h,i) perylene, total (μg/L) (34521)
S-078	B3	<10	<10	<10	<10	<10	<10	<10
S-079	A20	<10	<10	<10	<10	<10	<10	<10
S-080	W-3	<10	<10	<10	<10	<10	<10	<10
S-081	BH23	<10	<10	<10	<10	<10	<10	<10
S-082	232-45	le	<10	<10	<10	<10	<10	<10
S-083	105	<10	<10	<10	<10	<10	<10	<10
S-084	106	<10	<10	<10	<10	<10	<10	<10
S-085	E3	<10	<10	<10	<10	<10	<10	<10
980-S	13	.ee	<10	<10	<10	<10	<10	<10
S-087	122	<10	<10	<10	<10	<10	<10	<10
S-088	B8	<10	<10	<10	<10	<10	<10	<10
680-S	BHID	<10	<10	<10	<10	<10	<10	<10
060-S	BHIS	<10	<10	<10	<u><10</u>	<10	<10	01>
S-091	BH18S	<10	<10	<10	<10	<10	<10	<10
S-092	BH2	<10	<10	<10	<10	<10	<10	<10
S-093	BH25	<10	<10	<10	<10	<10	<10	<10
S-094	BH14	<10	<10	<10	<10	<10	<10	<10
S-095	BH19	<10	<10	<10	<10	<10	<10	<10
960-S	BH13	<10	<10	<10	<10	<10	<10	<10
S-097	BH12	<10	<10	<10	<10	<10	<10	<10
860-S	BH20	<10	<10	<10	<10	<10	<10	<10
S-099	BH17	<10	<10	<10	<10	<10	<10	<10
S-100	D45	<10	<10	<10	<10	<10	<10	<10
S-101	MW-1	<10	<10	<10	<10	<10	<10	<10
S-102	12	<10	<10	<10	<10	<10	<10	<10
S-103	BH5S	<10	<10	<10	<10	<10	<10	<10
S-104	C3	<10	<10	<10	<10	<10	<10	<10
S-105	C4	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2- 1,3-Di- phenol, chloro- total benzene (µg/L) (µg/L) (34586) (34566)
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10
<10 <10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		2,4-Di- methyl- phenol, total	Bis(2- chloro- ethoxy) methane,	2,4-Di- chloro- phenol, total	1,2,4- Tri- chloro- benzene	Naphth- alene, total	4- Chloro- aniline	Hexa- chloro- buta- diene	Para- chloro- meta cresol,	2- Methyl naph- thalene	chloro- cyclo- pent- adiene,	2,4,6- Tri- chloro- phenol,	2,4,5- Tri- chloro- phenol,	2- Chloro- naph- thalene, total	2- Nitro-
Sample number	Well	(µg/L) (34606)	(μg/L) (34278)	(μg/L) (34601)	(μg/L) (34551)	(μg/L) (34696)	(μg/L) (30343)	(μg/L) (34391)	(μg/L) (34452)	(μg/L) (30194)	(μg/L) (34386)	(μg/L) (34621)	(μg/L) (77687)	(μg/L) (34581)	(μg/L) (30195)
S-106	CI	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-107 E	E5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-108	BH5D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-109 E	BH18I	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-110 E	BH32	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-111 E	BHII	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-112 E	BH18D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-113 I	D70	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
	BH16D	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-115	BH16S	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-116	D75	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
	C12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
	LK13	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
	120	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
	6SM	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-121	WS7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-122	WS2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
	FILOI	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-124	WS5	96	<10	<10	<10	4e,d	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-125	F1L04	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-126	FILOS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-127	FIL02	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25
S-128	FILO6	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<25

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

2- Methyl 4,6-Di- nitro- phenol (µg/L) (30204)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
4- Nitro- aniline (\ug'L) (30196)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Fluor- ene, total (\ug/L) (34381)	<10	<10	<10	<10	.4e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	2e	<10	<10	<10	<10	<10
4- Chloro- phenyl phenyl ether, total (μg/L) (34641)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Diethyl phthal- ate, total (μg/L) (34336)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	Зе	<10	<10	<10	<10	<10	<10	<10	<10	<10
2,4-Dinitro- nitro- toluene, total (µg/L) (34611)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Di- benzo- furan, total (μg/L) (81302)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	2e	<10	<10	<10	<10	<10
4- Nitro- phenol, total (μg/L) (34646)	<25	<25	<25	<25	<25	<25	<25	<25	. <25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	425	<25
2,4-Di- nitro- phenol, total (μg/L) (34616)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	25	<25	25	<25	<25
Ace- naphth- ene, total (μg/L) (34205)	<10	<10	<10	<10	.6e	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	4e	<10	<10	<10	<10	<10
3- Nitro- aniline, total (µg/L) (78300)	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
2,6-Dinitro- nitro- toluene, total (µg/L) (34626)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ace- napth- ylene, total (μg/L) (34200)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.8e	<10	<10	<10	<10	<10
Di- methyl phthal- ate, total (μg/L) (34341)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Well	CI	ES	BH5D	BH18I	BH32	BHII	BH18D	D70	BH16D	BH16S	D75	C12	LK13	120	WS9	WS7	WS2	FILO1	WS5	FIL04	FILO5	FILO2	FILO6	C2
Sample	S-106	S-107	S-108	S-109	S-110	S-111	S-112	S-113	S-114	S-115	S-116	S-117	S-118	S-119	S-120	S-121	S-122	S-123	S-124	S-125	S-126	S-127	S-128	S-129

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	N-Nitro- sodi- phenyl amine, total (µg/L) (34433)	4- Bromo- phenyl phenyl ether, total (μg/L) (34636)	Hexa- chloro- benzene, total (μg/L) (39700)	Penta- chloro- phenol, total (μg/L) (39032)	Phenan- threne, total (μg/L) (34461)	Anthra- cene, total (μg/L) (34220)	Carba- zole (μg/L) () ¹	Di-N- butyl phthal- ate, total (µg/L) (39110)	Fluor- anthene, total (µg/L) (34376)	Pyrene, total (μg/L) (34469)	N-Butyl benzyl phthal- ate, total (μg/L) (34292)	3,3'- Di- chloro- benzi- dine, total (μg/L) (34631)	Benzo(a) anthra- cene, total (μg/L) (34526)	Chry- sene, total (μg/L) (34320)	Bis(2-ethyl-hexyl) phthal-ate, total (µg/L) (39100)
S-106	CI	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-107	ES	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-108	BHSD	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-109	BH18I	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-110	BH32	<10	<10	<10	<25	.8e	<10	<10	1e	.4e	.4e	<10	<10	<10	<10	.9e
S-111	BHII	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.9e
S-112	BH18D	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-113	D70	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-114	BH16D	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.7e
S-115	BH16S	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-116	D75	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.5e
S-117	C12	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-118	LK13	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-119	120	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-120	6SM	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	116
S-121	WS7	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-122	WS2	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-123	FILOI	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-124	WSS	<10	<10	<10	<25	3e	.4e	<10	<10	.9e	.7e	<10	<10	<10	<10	<10
S-125	FILO4	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-126	FILOS	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-127	FILO2	<10	<10	<10	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-128	FILO6	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
S-129	C2	<10	<10	<10	<25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Table 23. Concentrations of target semivolatile organic compounds in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Di-n- octyl	Benzo(b)	Benzo(k)		Indeno (1,2,3-	1,2,5,6- Dibenz-	
		phthal- ate,	fluoran- thene,	fluoran- thene,	Benzo(a) pyrene,	cd) pyrene,	anthra- cene,	Benzo(g,h,i) perylene,
Sample number	Well	total (μg/L) (34596)	total (μg/L) (34230)	total (μg/L) (34242)	total (μg/L) (34247)	total (μg/L) (34403)	total (μg/L) (34556)	total (μg/L) (34521)
S-106	CI	<10	<10	<10	<10	<10	<10	<10
S-107	E5	<10	<10	<10	<10	<10	<10	<10
S-108	BHSD	<10	<10	<10	<10	<10	<10	<10
S-109	BH18I	<10	<10	<10	<10	<10	<10	<10
S-110	BH32	<10	<10	<10	<10	<10	<10	<10
S-111	BH11	<10	<10	<10	<10	<10	<10	<10
S-112	BH18D	<10	<10	. <10	<10	<10	<10	<10
S-113	D70	<10	<10	<10	<10	<10	<10	<10
S-114	BH16D	<10	<10	<10	<10	<10	<10	<10
S-115	BH16S	<10	<10	<10	<10	<10	<10	<10
S-116	D75	<10	<10	<10	<10	<10	<10	. <10
S-117	C12	<10	<10	<10	<10	<10	<10	<10
S-118	LK13	<10	<10	<10	<10	<10	<10	<10
S-119	120	<10	<10	<10	<10	<10	<10	<01>
S-120	6SW	<10	<10	<10	<10	<10	<10	<10
S-121	WS7	<10	.5e	<10	<10	<10	<10	<10
S-122	WS2	<10	<10	<10	<10	<10	<10	<10
S-123	FILO1	э9.	<10	<10	<10	<10	<10	<10
S-124	WS5	<10	<10	<10	<10	<10	<10	<10
S-125	FILO4	<10	<10	<10	<10	<10	<10	<10
S-126	FILOS	<10	<10	<10	<10	<10	<10	<10
S-127	FILO2	4e	<10	<10	<10	<10	<10	<10
S-128	FILO6	<10	<10	<10	<10	<10	<10	<10
S-129	C2	<10	<10	<10	<10	<10	<10	<10

¹No available WATSTORE or STORET parameter code for this compound.

Table 24. Concentrations of tentatively identified semivolatile organic compounds and molecular sulfur in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993

[μ g/L, microgram per liter; n.d., not detected; e, estimated; d, sample was diluted]

Sample number	Well name	Aliphatic hydrocarbon compounds (μg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (μg/L)	Number of aromatic compounds detected	Unknown compounds (µg/L)	Number of unknown compounds detected	Molecular sulfur (μg/L)
S-001	E10	n.d.	0	n.d.	0	2e	1	n.d.
S-002	BH21	n.d.	0	n.d.	0	12e	4	n.d.
S-003	230-58	n.d.	0	n.d.	0	2e	1	n.d.
S-004	E20	n.d.	0	n.d.	0	n.d.	0	n.d.
S-005	234-142	n.d.	0	n.d.	0	n.d.	0	n.d.
S-006	D40	n.d.	0	21e	1	202e	17	n.d.
S-007	WP1	n.d.	0	n.d.	0	2e	1	n.d.
S-008	IC	n.d.	0	n.d.	0	n.d.	0	n.d.
S-009	G-1	n.d.	0	n.d.	0	n.d.	0	n.d.
S-010	230-128	n.d.	0	n.d.	0	n.d.	0	n.d.
S-011	ВН8	n.d.	0	n.d.	0	n.d.	0	n.d.
S-012	BH22	n.d.	0	n.d.	0	n.d.	0	n.d.
S-013	BH33	n.d.	0	2e	1	10e	3	n.d.
S-014	E2	n.d.	0	n.d.	0	n.d.	0	n.d.
S-015	D1	n.d.	0	n.d.	0	n.d.	0	n.d.
S-016	WP2	n.d.	0	n.d.	0	n.d.	0	n.d.
S-017	230-24	n.d.	0	n.d.	0	n.d.	0	n.d.
S-018	D11	n.d.	0	n.d.	0	6e	1	2e
S-019	D10	n.d.	0	58e, d	1	4,622e, d	19	n.d.
S-020	D-5A	n.d.	0	n.d.	0	2e	l	n.d.
S-021	225	n.d.	0	n.d.	0	2e)	n.d.
S-022	D20	n.d.	0	590e	9	227e	10	6e
S-023	D21	2e	1	n.d.	0	n.d.	0	n.d
S-024	E6	2e	1	n.d.	0	n.d.	0	n.d.
S-025	E7	56e	4	n.d.	0	102e	11	9e
S-026	24	n.d.	0	n.d.	0	n.d.	0	3e
S-027	25	n.d.	0	n.d.	0	n.d.	0	n.d.
S-028	W-1A	n.d.	0	n.d.	0	n.d.	0	n.d.
S-029	BH30	n.d.	0	n.d.	0	7e	2	n.d.
S-030	IT	n.d.	0	n.d.	0	4e	2	n.d.
S-032	I1	n.d.	0	n.d.	0	2e	1	n.d.
S-033	I13	n.d.	0	n.d.	0	110e	11	43e
S-034	I12	n.d.	0	n.d.	0	4e	2	n.d.
S-035	I14	n.d.	0	n.d.	0	n.d.	0	n.d.
S-036	BH31	n.d.	0	n.d.	0	n.d.	0	n.d.
S-037	D25	n.d.	0	n.d.	0	n.d.	0	2e
S-038	BH29	n.d.	0	n.d.	0	n.d.	0	n.d.
S-039	BH26	n.d.	0	n.d.	0	8e	1	n.d.

Table 24. Concentrations of tentatively identified semivolatile organic compounds and molecular sulfur in groundwater samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well name	Aliphatic hydrocarbon compounds (μg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (μg/L)	Number of aromatic compounds detected	Unknown compounds (μ g /L)	Number of unknown compounds detected	Molecula sulfur (μg/L)
S-040	237-45	n.d.	0	n.d.	0	3e	1	2e
S-041	235-45	n.d.	0	n.d.	0	6e	2	n.d.
S-042	MW-5	n.d.	0	n.d.	0	5e	2	n.d.
S-043	MW-15	35e	3	n.d.	0	89e	16	n.d.
S-044	A3	n.d.	0	3e	1	85e	15	n.d.
S-045	E1	n.d.	0	n.d.	0	n.d.	0	n.d.
S-046	A2	n.d.	0	n.d.	0	n.d.	0	n.d.
S-047	BH27	n.d.	0	n.d.	0	2e	1	n.d.
S-048	B2	n.d.	0	22e	2	225	15	151e
S-049	A 1	n.d.	0	15e	1	174e	19	n.d.
S-050	A4	n.d.	0	n.d.	0	n.d.	0	n.d.
S-051	I15	n.d.	0	n.d.	0	98e	19	n.d.
S-052	244-125	n.d.	0	n.d.	0	9e	4	n.d.
S-053	244-65	n.d.	0	5e	1	14e	5	n.d.
S-054	BH6	n.d.	0	n.d.	0	2e	1	n.d.
S-055	BH4D	n.d.	0	n.d.	0	n.d.	0	4e
S-056	BH4S	n.d.	0	n.d.	0	3e	1	n.d.
S-057	BH24	n.d.	0	n.d.	0	n.d.	0	n.d.
S-058	IP	n.d.	0	n.d.	0	6e	2	n.d.
S-059	I16	n.d.	0	n.d.	0	n.d.	0	n.d.
S-060	I21	n.d.	0	n.d.	0	3e	1	n.d.
S-061	BH7I	n.d.	0	n.d.	0	n.d.	0	n.d.
S-062	BH9S	n.d.	0	n.d.	0	n.d.	0	n.d.
S-063	BH15	n.d.	0	n.d.	0	5e	2	n.d.
S-064	I10	n.d.	0	n.d.	0	15e	1	550e
S-065	BH7S	n.d.	0	n.d.	0	n.d.	0	n.d.
S-066	BH7D	n.d.	0	n.d.	0	32e	7	n.d.
S-067	19	n.d.	0	n.d.	0	n.d.	0	n.d.
S-068	18	n.d.	0	n.d.	0	21e	5	n.d.
S-069	B7	15e	5	n.d.	0	3e	1	n.d.
S-070	B5	n.d.	0	n.d.	0	n.d.	0	n.d.
S-071	BH28	n.d.	0	n.d.	0	n.d.	0	n.d.
S-072	D67	n.d.	0	n.d.	0	16e	1	n.d.
S-073	D68	n.d.	0	n.d.	0	n.d.	0	n.d.
S-074	C19	n.d.	0	567e	15	730e	5	n.d.
S-075	C25	n.d.	0	n.d.	0	n.d.	0	n.d.
S-076	C18	n.d.	0	n.d.	0	n.d.	0	n.d.
S-077	B10	77e	2	n.d.	0	n.d.	0	n.d.
S-078	В3	n.d.	0	n.d.	0	n.d.	0	n.d.

Table 24. Concentrations of tentatively identified semivolatile organic compounds and molecular sulfur in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well name	Aliphatic hydrocarbon compounds (μg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (µg/L)	Number of aromatic compounds detected	Unknown compounds (µg/L)	Number of unknown compounds detected	Molecular sulfur (μg/L)
S-079	A20	n.d.	0	n.d.	0	n.d.	0	n.d.
S-080	W-3	11e	3	49e	2	21e	6	3e
S-081	BH23	201e	15	n.d.	0	710e	1	n.d.
S-082	232-45	n.d.	0	n.d.	0	n.d.	0	n.d.
S-083	105	4e	1	n.d.	0	n.d.	0	n.d.
S-084	106	3e	1	n.d.	0	n.d.	0	n.d.
S-085	E3	2e	1	n.d.	0	3e	1	n.d.
S-086	13	n.d.	0	95e	13	7e	2	n.d.
S-087	I22	2e	1	n.d.	0	n.d.	0	n.d.
S-088	B 8	n.d.	0	n.d.	0	n.d.	0	n.d.
S-089	BHID	n.d.	0	4e	1	60e	10	n.d.
S-090	BHIS	n.d.	0	n.d.	0	n.d.	0	n.d.
S-091	BH18S	2e	1	n.d.	0	n.d.	0	n.d.
S-092	BH2	n.d.	0	n.d.	0	n.d.	0	n.d.
S-093	BH25	2e	1	n.d.	0	n.d.	0	n.d.
S-094	BH14	3e	1	n.d.	0	n.d.	0	n.d.
S-095	BH19	3e	1	3e	1	n.d.	0	n.d.
S-096	BH13	2e	1	n.d.	0	n.d.	0	n.d.
S-097	BH12	n.d.	0	n.d.	0	n.d.	0	n.d.
S-098	BH20	n.d.	0	n.d.	0	n.d.	0	n.d.
S-099	BH17	n.d.	0	n.d.	0	n.d.	0	n.d.
S-100	D45	6e	2	2e	1	8e	1	n.d.
S-101	MW-1	n.d.	0	n.d.	0	n.d.	0	n.d.
S-102	12	n.d.	0	759e	16	48e	4	n.d.
S-103	BH5S	n.d.	0	n.d.	0	8e	3	n.d.
S-104	C3	n.d.	0	n.d.	0	n.d.	0	n.d.
S-105	C4	n.d.	0	n.d.	0	11e	3	n.d.
S-106	C1	n.d.	0	n.d.	0	2e	1	n.d.
S-107	E5	n.d.	0	n.d.	0	n.d.	0	n.d.
S-108	BH5D	4e	2	n.d.	0	n.d.	0	n.d.
S-109	BH18I	n.d.	0	n.d.	0	59e	6	n.d.
S-110	BH32	5e	1	7e	1	3,533e	7	32e
S-111	BH11	n.d.	0	n.d.	0	n.d.	0	n.d.
S-112	BH18D	n.d.	0	n.d.	0	8e	2	n.d.
S-113	D70	n.d.	0	n.d.	0	4e	1	n.d.
S-114	BH16D	n.d.	0	n.d.	0	n.d.	0	n.d.
S-115	BH16S	n.d.	0	n.d.	0	n.d.	0	n.d.
S-116	D75	n.d.	0	n.d.	0	n.d.	0	n.d.

Table 24. Concentrations of tentatively identified semivolatile organic compounds and molecular sulfur in groundwater samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample number	Well name	Aliphatic hydrocarbon compounds (µg/L)	Number of aliphatic compounds detected	Aromatic hydrocarbon compounds (µg/L)	Number of aromatic compounds detected	Unknown compounds (µg/L)	Number of unknown compounds detected	Molecular sulfur (μg/L)
S-117	C12	n.d.	0	n.d.	0	n.d.	0	n.d.
S-118	LK13	n.d.	0	n.d.	0	n.d.	0	n.d.
S-119	[20	n.d.	0	n.d.	0	n.d.	0	12e
S-120	WS9	n.d.	0	n.d.	0	n.á.	0	n.d.
S-121	WS7	n.d.	0	n.d.	0	n.d.	0	n.d.
S-122	WS2	n.d.	0	n.d.	0	n.d.	0	n.d.
S-123	FILO1	n.d.	0	n.d.	0	12e	4	n.d.
S-124	WS5	1,561e	9	n.d.	0	21,303e	10	260e
S-125	FILO4	n.d.	0	30e	2	16,513e	18	n.d.
S-126	FILO5	5e	2	n.d.	0	11e	4	n.d.
S-127	FILO2	n.d.	0	n.d.	0	13,035e	7	n.d.
S-128	FILO6	14e	3	29e	10	2e	1	n.d.
S-129	C2	n.d.	0	23e	1	9e	2	21e

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993

[µg/L, microgram per liter; <, less than; e, estimated; p, more than 25 percent difference between the two gas chromatograph columns used for analysis, lower value is reported; -- no data; numbers in parentheses in column header are U.S. Geological Survey WATSTORE and U.S. Environmental Protection Agency STORET parameter codes]

Endo- sulfan sulfate, total (µg/L) (82623)	<0.1	<u>.</u> .	<u>.</u> .	Ÿ	 	-	-	-	<u>-</u> .	~	- 7	\ \ \	-	-	√	<u>-</u> '	∵	√	<.2	<u>~</u> :	<u>~</u>	-	<u>-</u>	<u>.</u>	-	<u>~</u>	-	<u>-</u> .
P,p ' DDD, total (μg/L) (39310)	<0.1	~ 	~	~	×.	~ 	<u>-</u> ;	~	~	<u>~</u>	~	7	~	-	<u>~</u>	~	~	<u>~</u>	1.5e	~	-	~	<u>``</u>	<u>~</u>	<u>-</u>	-	<u>.</u>	<u>`</u>
Endo- sulfan II, total (µg/L) (34356)	<0.1	<u>~</u>	∵	∵	~	∵	-	-	-	-	<u>~</u>	Ÿ	~ 	-	Ÿ	~	~ ~	-	<.2	-	<u>~</u>	-	~ ~	- -	-	<u>~</u>	-	<u>~</u>
Endrin, total (μg/L) (39390)	<0.1	×.	~	<u>-</u>	√	- -	-	- ∵	~	-	<u>~</u>	V	~ ~	<u>-</u> ;	~ 	<u>~</u>	~	<u>~</u>	<.2	~	~	-	~	<u>~</u>	~	∵	~	<u>~</u>
p,p ' DDE, total (μg/L) (39320)	<0.1	<.1 	<u></u>	<. <u>1</u>	-	~ 	<. <u>1</u>	- ;	~	<u>.</u> .	<u>-</u> ;	į.	~;	<u>.</u> .	<u></u>	<u>.</u> ;	-	7	.013e	-	~	7	~	-	-	-	~;	~
Dieldrin, total (μg/L) (39380)	<0.1	×.	~	~;	~ ~	~ 	~ ~	√	~ ~	~ .1	~	Ÿ	-	<u>.</u>	~	~ `	-	-	<:2	·.	-	-	- ;	-	-	~	~ ~	~ ~
Endo- sulfan I, total (μg/L) (34361)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Hepta- chlor epoxide, total (µg/L) (39420)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<:05	<.05	~	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Aldrin, total (μg/L) (39330)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	-	<.05	<.05	<.05	.004e	<.05	<.05	< 05	<.05	< 0.5
Hepta- chlor, total (μg/L) (39410)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	< .05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Lindane, total (μg/L) (39340)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	-	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Delta benzene hexa- chloride, total (μg/L) (34259)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>^</u>	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Beta benzene hexa- chloride, total (μg/L) (39338)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~· 50' >	<.05	<.05	<.05	<.05	<.05	<.05	~	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Alpha benzene hexa- chloride, total (μg/L) (39337)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	\ <u>`</u>	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Well	E10	BH21	230-58	E20	234-142	D40	Wi	IC	G-1	230-128	BH8	BH22	BH33	E2	DI	WP2	230-24	D11	D10	D-5A	225	D20	D21	E6	E7	24	25	W-1A
Sample	S-001	S-005	S-003	S-004	S-005	900-S	S-007	S-008	8-000	S-010	S-011	S-012	S-013	S-014	S-015	S-016	S-017	S-018	S-019	S-020	S-021	S-022	S-023	S-024	S-025	S-026	S-027	S-028

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	p,p ' DDT, total (μg/L) (39300)	Methoxy- chlor, total (µg/L) (39480)	Endrin ketone, total (µg/L) (78008)	Endrin alde- hyde, total (µg/L) (82622)	Alpha- Chlor- dane, total (µg/L) (39348)	Gamma- Chlor- dane, total (µg/L) (39810)	Tox- aphene, total (µg/L) (39400)	Aroclor 1016 PCB, total (µg/L) (34671)	Aroclor 1221 PCB, total (µg/L) (34988)	Aroclor 1232 PCB, total (μg/L) (39492)	Aroclor 1242 PCB, total (µg/L) (39496)	Aroclor 1248 PCB, total (µg/L) (39500)	Aroclor 1254 PCB, total (µg/L) (39504)	Aroclor 1260 PCB, total (μg/L) (39508)
S-001	E10	<0.1	<0.5	<0.1	<0.1	<0.05	<0.05	<\$	 	<2	⊽	 - 	\	\ <u>\</u>	⊽
S-005	BH21	<u>^</u>	<.5		<u>~</u>	<.05	<.05	\$	~	♡	$\overline{\lor}$	∇	$\overline{\lor}$	$\overline{\vee}$	⊽
S-003	230-58	<u>^</u>	<.5	~ '	<u>~</u>	<.05	<.05	\$	⊽	♡	⊽	$\overline{\vee}$	$\overline{\vee}$	⊽	⊽
S-004	E20	<u>~</u>	<.5	<u>~</u>	<u>~</u>	<.05	<.05	\$	$\overline{\lor}$	7	$\overline{\vee}$	~	∇	$\overline{\lor}$	⊽
S-005	234-142	<u>~</u>	<.5	\ 1	×.	<.05	<.05	\$	⊽	4	7	7	7	~	∵
900-S	D40	<u>^</u>	<.5	<u>^</u>	^ 	<.05	<.05	\$	∇	\$	⊽	$\overline{\lor}$	▽	⊽	⊽
S-007	W1	<u>~</u>	<.5	<u>~</u>	<u>^</u>	<.05	<.05	\$	∇	7	∵	∇	∇	~	∇
S-008	IC	<u>~</u>	<.5	×.	~ ~	<.05	<.05	\$	∇	7	$\overline{\vee}$	∇	▽	~	⊽
600-S	<u>5</u>	<.1	<.5	<.1	\ <u>`</u>	<.05	<.05	\$	~	4	~	~	⊽	~	⊽
S-010	230-128	<u>^</u>	<.5	<u>^</u>	<u>-</u> ;	<.05	<.05	\$	∇	7	∇	~	$\overline{\vee}$	$\overline{\vee}$	∇
S-011	BH8	<u>~</u>	<.5	<u>~</u>	~	<.05	<.05	\$	∇	7	∇	~	∇	~	⊽
S-012	BH22	<u>^</u>	<.5	^ 	~ 	<.05	<.05	\$	∇	7	$\overline{\vee}$	∇	∇	∇	⊽
S-013	BH33	<u>^</u>	<.5	.×.	7	<.05	<.05	<\$	⊽	\$	⊽	⊽	∇	~	∇
S-014	E2	<u>^</u>	<.5	\ <u>`</u>	<u>~</u>	<.05	<.05	\$	7	7	$\overline{\vee}$	~	∇	~	⊽
S-015	Di	<. 1.	<.5	\ <u>`</u>	∵	<.05	<.05	\$	~	7	∇	~	∇	~	▽
S-016	WP2	- .	<.5		-	<.05	<.05	\$	~	\$	⊽	∵	▽	⊽	∇
S-017	230-24	 	<.5	-		<.05	<.05	\$	~	\$	⊽	$\overline{\lor}$	⊽	⊽	~
S-018	D11	 	<.5	<u>~</u>	-;	<.05	<.05	\$	⊽	\$	⊽	7	⊽	~	V
S-019	D10	<.2	⊽	<.2	<.2	<u>~</u>	.007e,p	<10	7	4>	7	7	7	\$	4
S-020	D-5A	<u>.</u> .	<.5	<u></u>	-	<.05	<.05	\$	~	۵	⊽	$\overline{\lor}$	⊽	7	$\overline{\lor}$
S-021	225	. .	<.5	~	<u>.</u>	<.05	<.05	\$	~	7	$\overline{\vee}$	$\overline{\lor}$	⊽	~	⊽
S-022	D20	<u>.</u> .	<.5	<u>.</u>	7	<.05	<.05	\$	7	\$	⊽	~	⊽	$\overline{\vee}$	⊽
S-023	D21	 	<.5	<u>``</u>	<u>~</u>	<:05	<.05	\$	⊽	\$	∵	~	$\overline{\vee}$	~	⊽
S-024	E6	<u>-</u>	<.5	 	~	<.05	<.05	\$	⊽	\$	~	~	~	~	⊽
S-025	E7	<u>~</u>	<.5	<u>~</u>	<u>.</u>	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	~	$\overline{\lor}$
S-026	24		<.5	<u>.</u> .	-	<.05	<.05	\$	⊽	\$	⊽	⊽	⊽	\overline{v}	⊽
S-027	25	.	<.5	<u>-</u> .	7	<:05	<.05	\$	⊽	\$	⊽	⊽	$\overline{\vee}$	~	⊽
S-028	W-1A	<u>.</u>	<.5	7	<u>-</u> ;	<.05	<.05	\$	⊽	\$	$\overline{\lor}$	⊽	⊽	~	⊽

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and illinois, June 1993—Continued

Sample	Well	p,p ' DDT, total (μg/L) (39300)	Meth- oxy- chlor, total (μg/L) (39480)	Endrin ketone, total (μg/L) (78008)	Endrin alde- hyde, total (μg/L) (82622)	Alpha- Chlor- dane, total (μg/L) (39348)	Gamma- Chlor- dane, total (μg/L) (39810)	Tox- aphene, total (µg/L) (39400)	Aroclor 1016 PCB, total (μg/L) (34671)	Aroclor 1221 PCB, total (μg/L) (34988)	Aroclor 1232 PCB, total (μg/L) (39492)	Aroclor 1242 PCB, total (μg/L) (39496)	Aroclor 1248 PCB, total (µg/L) (39500)	Aroclor 1254 PCB, total (μg/L) (39504)	Aroclor 1260 PCB, total (μg/L) (39508)
S-029	BH30	<0.1	<0.5	Ø.I	<0.1	<0.05	<0.05	♦	⊽	\$	⊽	⊽	⊽	⊽	⊽
S-030	П	<u>.</u> .	<.5	~; `	<u>.</u> .	<.05	<.05	\$	$\overline{\vee}$	4	$\overline{\vee}$	<u>~</u>	⊽	▽	7
S-032	п	~	<.5	~; ~	-	<.05	<.05	\$	⊽	4	⊽	⊽	⊽	⊽	7
S-033	113	~ 	<.5	~ 	~	<.05	<.05	♡	⊽	7	⊽	⊽	⊽	· 🔽	7
S-034	112		<.5	\ <u>`</u>	7	<.05	<:05	\$	$\overline{\vee}$	4	7	√	⊽	⊽	~
S-035	114	<u>.</u> .	<.5	~ ~	~	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	⊽	⊽
S-036	BH31	~	<.5	Ÿ	~; ~	<.05	<.05	♡	⊽	4	~	⊽	⊽	⊽	⊽
S-037	D25	-	<.5	~	-;	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	⊽	⊽
S-038	BH29	~ `	<.5	\ <u>`</u>	.	<.05	<.05	\$	⊽	7	~	⊽	⊽	⊽	~
S-039	BH26	<u>~</u>	<.5	~	- .	<.05	<.05	\$	⊽	7	~	⊽	⊽	⊽	⊽
S-040	237-45	v	<.5	7	~;	<.05	<.05	\$	⊽	\$	⊽	⊽	⊽	⊽	⊽
S-041	235-45	~	<.5	~	~	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	⊽	⊽
S-042	MW-5	v	<.5	√	- .	<.05	<.05	\$	⊽	₽	⊽	⊽	⊽	⊽	⊽
S-043	MW-15	Ÿ	<.5	<u>.</u> .	<u>~</u>	<.05	<.05	\$	⊽	\$	⊽	⊽	⊽	⊽	⊽
S-044	A3	<u>'</u>	<.5	Ÿ	~; `	<.05	.015e	\$	⊽	\$	∵	.99e	⊽	⊽	⊽
S-045	EI	Ÿ	<.5	. .	<u></u>	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	⊽	⊽
S-046	A2	.	<.5	-	<u>~</u>	<.05	<.05	\$	⊽	\$	~	⊽	⊽	⊽	⊽
S-047	BH27	Ÿ	<.5	-	<u>~</u>	<.05	<.05	\$	⊽	\$	⊽	⊽	⊽	~	⊽
S-048	B2	~ ;	<,5	7.	~; '	<.05	<.05	\$	⊽	۵	~	⊽	⊽	⊽	V
S-049	Α1	~ ~	<.5	-	Ÿ	<.05	<.05	\$	⊽	₽	⊽	⊽	⊽	⊽	⊽
S-050	A4	~ ``	<.5	- ;	<u>.</u>	<.05	<.05	\$	⊽	\$	⊽	⊽	⊽	⊽	V
S-051	115	∵ ∵	<.5	~	\ <u>`</u>	<.05	<.05	Q	⊽	₽	⊽	⊽	⊽	⊽	⊽
S-052	244-125	<u>~</u>	<.5	-	~	<.05	<.05	\$	⊽	♡	V	⊽		⊽	⊽
S-053	244-65	~ `	<.5	~	~; '	<.05	<.05	\$	⊽	♡	⊽	∵	⊽	⊽	⊽
S-054	BH6	<u>~</u>	<.5	<u>.</u> .	7	<.05	<.05	۵.	7	♡	⊽	⊽	⊽	⊽	⊽
S-055	BH4D	~	<.5	~	ï.	<.05	<.05	\$	⊽	\$	⊽	⊽	⊽	⊽	⊽
S-056	BH4S	~ `	<.5	~	<u></u>	<.05	<.05	\$	~	♡	⊽	⊽	⊽	⊽	⊽
S-057	BH24	~	<.5	<u>~</u>	~·	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	⊽	⊽
S-058	IP	<u>~</u>	<.5	<u>.</u> ;	- .	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	⊽	⊽

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Alpha benzene	Beta benzene	Delta benzene				Hepta-							Endo-
o de la companya de l	i d	hexa- chloride, total	hexa- chloride, total	hexa- chloride, total	Lindane, total	Hepta- chlor, total	Aldrin, total	chlor epoxide, total	Endo- sulfan I, total	Dieldrin, total	p,p ' DDE, total	Endrin, total	Endo- sulfan II, total	p,p' DDD, total	sulfan sulfate, total
Sample	name	(Hg/L) (39337)	(39338)	(4259)	(19340)	(39410)	(39330)	(39420)	(34361)	(39380)	(39320)	(39390)	(49/L) (34356)	(#9/E) (39310)	(#g/L) (82623)
S-059	116	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
090-S	121	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u></u>	<u></u>	<u></u>	<u>~</u>	<u></u>	~
S-061	BH7I	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>.</u> .	<u>~</u>	<u>-</u> .	~	.22p	<u>~</u>
S-062	BH9S	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.1	- .	<u></u>	~· <u>·</u>	~	<u></u>
S-063	BH15	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~	<u>.</u> .	<u></u>	~	<u>.</u> .	<u>~</u>
S-064	110	<.05	<.05	.02e,p	<.05	<.05	<.05	<.05	<.05	×.	×.	~	.01e,p	~	\ <u>`</u>
S-065	BH7S	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u></u>	- ;		~	~	\ <u>`</u>
990-S	BH7D	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	.013e.p	∵	7	-	-	7
2-067	61	<.05	<.05	<:05	<.05	<.05	<.05	<.05	<.05		<u>'</u>	 ;	7	\ <u>`</u>	
890-S	81	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>	-	<u>-</u> ;	~	~	-
690-S	B7	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>	~	~	<u>-</u>	<u></u>	
S-070	B5	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>.</u> .	<u>~</u>	 V	7	<u></u>	<u>~</u>
S-071	BH28	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	·.	- -	-	 	<u></u>	~
S-072	D67	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05		\ <u>`</u>	<u><1</u>	75	7	<.1
S-073	D68	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>.</u> .	<u>~</u>	·.1	- .	\ <u>`</u>	~
S-074	C19	<.05	<.05	<:05	<.05	<.05	<.05	<.05	<.05	 	. <u>.</u>	<u>``</u>	.	<u></u>	. .
S-075	C25	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>	<u></u>	-	<u>-</u>	- ;	~
920-S	C18	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	 	<u>~</u>	 	. .	<u>-</u> :	- ;
S-077	B10	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>.</u> .	<u>^</u>	- ;	<u>.</u>	 	<u>.</u> .
S-078	B3	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>	- .	<u></u>	~	<u>.</u> .	<u>'</u>
S-079	A20	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~	. .	<u>.</u> .	-	·.1	- .
S-080	W-3	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<:05	·.1	<u>~</u>	- .		~	~
S-081	BH23	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05		~	<u>~</u>	 	7	.019e
S-082	232-45	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>	<u>^</u>	<u>~</u>	<u>.</u>	7	-
S-083	105	<.05	<.05	<.05	<.0.5	<.05	<.05	<.05	<.05	<u>~</u>	-	<u>~</u> :	- .	<u></u>	7
S-084	106	<.05	<:05	<.05	<.05	<.05	<.05	<.05	<.05	~·	- ;	<u>-</u> ;	<u>.</u> .	·.i	-
S-085	E3	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	·.1	<u>^.</u>	<u>~</u>	<u>.</u> .	- ;	~
980-S	13	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>.</u> ;	~	- .	-	<u>.</u>	7
S-087	121	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	- .	<u>~</u>	<u>~</u> .	- .	- V	-
S-088	B8	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	 	<u>~</u> :	- .	-	-	-
680-S	BHID	<.05	<:05	<.05	<.05	<.05	<.05	<.05	<.05	- ;	-	- -	7	7	- ∨

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	p,p' DDT, total (µg/L)	Methoxy- chlor, total (µg/L)	Endrin ketone, total (µg/L)	Endrin alde- hyde, total (µg/L)	Alpha- Chlor- dane, total (µg/L)	Gamma- Chlor- dane, total (µg/L)	Tox- aphene, total (µg/L)	Aroclor 1016 PCB, total (µg/L)	Aroclor 1221 PCB, total (µg/L)	Aroclor 1232 PCB, total (μg/L)	Aroclor 1242 PCB, total (µg/L)	Aroclor 1248 PCB, total (µg/L)	Aroclor 1254 PCB, total (µg/L)	Aroclor 1260 PCB, total (µg/L)
S-059	=	(00000)	(33400) \$(0.5	(1000)	(0EVEE)	<0.05	<0.05	(S)	((00100)	(33432)	(S2130)	(33300) -	(49304)	(33306)
090-S	121	7	<.5		7	<.05	<.05	\$. △	\$	⊽	. △	. △	∵ ⊽	∀ ∀
S-061	BH71	.22p	<.5	Ÿ	.04e	<.05	<.05	\$	~	\$	⊽	⊽	~	⊽	⊽
S-062	BH9S		<.5	<u>.</u> ,	<u>.</u> ;	<.05	<.05	\$	7	\$	⊽	⊽	~	⊽	7
S-063	BH15	<u>.</u>	<.5	<u>~</u>	<u>.</u> .	<.05	<.05	<>	⊽	\$	⊽	⊽	~	⊽	⊽
S-064	110		<.5	<u>-</u> ;	.034e,p	<.05	<.05	\$	⊽	7	~	⊽	~	⊽	⊽
S-065	BH7S	d19:	<.5	-	.031e,p	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	⊽	⊽
990-S	BH7D	~	<.5	<u>-</u>	-	<.05	<.05	\$	~	7	⊽	~	~	~	⊽
2-067	61	~	<.5	<u>~</u>	-	<.05	<.05	\$	⊽	\$	⊽	$\overline{\lor}$	7	$\overline{\vee}$	⊽
890-S	81	- ;	<.5	7	.016e,p	<.05	<.05	\$	~	7	∇	⊽	~	⊽	⊽
690-S	B7	~	<\$	\ 1	.022e	<.05	<.05	\$	⊽	7	⊽	∇	$\overline{\lor}$	~	⊽
S-070	B5	<u>-</u> ;	.016e,p	<u>~</u>	.021e,p	<.05	<.05	\$	⊽	7	⊽	$\overline{\vee}$	7	⊽	⊽
S-071	BH28	<u>-</u> ;	<.5	<u>.</u> ;	-	<.05	<.05	\$	⊽	7	⊽	$\overline{\lor}$	~	⊽	⊽
S-072	D67	<u>-</u>	<.5	~	.027e,p	<.05	<.05	\$	$\overline{\lor}$	\$	⊽	$\overline{\lor}$	⊽	$\overline{\lor}$	⊽
S-073	D68	<u>-</u>	<.5	- ;	<u>.</u> .	<.05	<.05	\$	⊽	7	⊽	∀	~	$\overline{\vee}$	⊽
S-074	C19	<u>.</u> ;	<.5	-	.046e,p	<.05	<.05	\$	~	7	~	~	$\overline{\vee}$	⊽	⊽
S-075	C25	 	<.5	~	<u>.</u> .	<.05	<.05	\$	⊽	7	~	~	$\overline{\lor}$	⊽	⊽
9/0-S	C18	- ;	<.5	~	<u>'</u> .	<.05	<.05	\$	~	7	$\overline{\lor}$	⊽	⊽	~	⊽
S-077	B10	-	<.5	~	<u>.</u> .	<.05	<.05	\$	⊽	7	⊽	$\overline{\vee}$	⊽	⊽	⊽
S-078	B3	~	<.5	-	<u>.</u> .	<.05	<.05	\$	⊽	\$	⊽	~	⊽	⊽	∇
8-079	A20	- ;	<.5	~	<u>.</u> .	<.05	<.05	<>	~	7	~	~	⊽	~	⊽
S-080	W-3	<u>.</u> .	<.5	- ;	<u>'</u> ,	<.05	<.05	\$	~	4	$\overline{\lor}$	∇	$\overline{\vee}$	⊽	⊽
S-081	BH23	.016e,p	<.5	- -	.033e,p	<.05	<.05	\$	⊽	4	⊽	⊽	$\overline{\vee}$	7	⊽
S-082	232-45	<u>.</u> .	<\$	7	<u>~</u>	<.05	<.05	\$	~	\$	~	⊽	⊽	~	⊽
S-083	105	-	<.5	<u>'</u>	<u>~</u>	<.05	<.05	\$	~	\$	$\overline{\vee}$	~	⊽ .	⊽	$\overline{\lor}$
S-084	106	- ;	<.5	<u>-</u>	_;	<.05	<.05	\$	~	\$	∇	▽	⊽	$\overline{\lor}$	~
S-085	E3	~ ~	<.5	- ;	.01e,p	<.05	<.05	\$	~	\$	~	$\overline{\lor}$	⊽	$\overline{\lor}$	⊽
980-S	13	-	<.5	<u></u> .	~	<.05	<.05	\$	⊽	8	⊽	⊽	$\overline{\vee}$	7	$\overline{\lor}$
S-087	121	<u>.</u>	<.5	<u>.</u> .	<u>`</u>	<.05	<.05	\$	⊽	4	⊽	$\overline{\vee}$	$\overline{\vee}$	⊽	~
S-088	B8	<u>.</u> .	<.5	<u>'</u>	<u>.</u> .	<.05	<.05	\$	~	4	⊽	⊽	$\overline{\vee}$	⊽	⊽
680-S	BHID	<u>.</u> ;	<.5	-	<u>-</u> ,	<.05	<.05	\$	⊽	8	⊽	⊽	⊽	$\overline{\lor}$	$\overline{\lor}$

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Sample	Well	Alpha benzene hexa- chloride, total (µg/L) (39337)	Beta benzene hexa- chloride, total (μg/L) (39338)	Delta benzene hexa- chloride, total (μg/L) (34259)	Lindane, total (μg/L) (39340)	Hepta- chlor, total (μg/L) (39410)	Aldrin, total (μg/L) (39330)	Hepta- chlor epoxide, total (μg/L) (39420)	Endo- sulfan I, total (μg/L) (34361)	Dieldrin, total (μg/L) (39380)	p,p ' DDE, total (μg/L) (39320)	Endrin, total (μg/L) (39390)	Endo- sulfan II, total (μg/L) (34356)	p,p ' DDD, total (μg/L) (39310)	Endosulfan sulfate, total (μg/L) (82623)
S-090	BHIS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	0.036e	<0.1	<0.1	<0.1	<0.1
S-091	BH18S	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	7	<u>.</u> .	~	~ 	<u>.</u> .	<u>.</u> .
S-092	BH2	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~; '	~ 	×.	~	-	.
S-093	BH25	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	 	<u>.</u> .	 	- ;	<u>.</u> .	
S-094	BH14	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>~</u>	~	< <u>'</u>	<u></u>	<u>~</u>	<. <u>1</u>
S-095	BH19	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~;	~ 	\ <u>`</u>	~	<u>-</u> ;	
960-S	BH13	<.05	<.05	<:05	<:05	<.05	<.05	<.05	<.05	<u>~</u>	 	<u>.</u>	- ;	<u>.</u> .	-
S-097	BH12	<.05	<.05	<:05	<.05	<.05	<.05	<.05	<.05	×.	<u>.</u>	~ 	- ;	<u>.</u> .	
860-S	BH20	<.05	<.05	<:05	<.05	<.05	<.05	<.05	<.05	<u>^.1</u>	~;	<u></u>	7	×.	-
8-099	BH17	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	·.		~	 	<u></u>	
S-100	D45	<.05	<.05	<:05	<.05	.012e	<.05	<.05	<.05	<u>.</u>	<u>.</u> .	~	- ;	<u>-</u> ;	<u>.</u> ;
S-101	MW-1	<.05	<.05	<.05	<:05	<.05	<.05		<.05	Ÿ			.01e	7	 V
S-102	- 12	<.05	.056p	<.05	<.05	#	.014e		.014e,p	.028e,	.019e,p		.036e,p	\ 	.033e,p
S-103	BH5S	<.05	<.05	<.05	<.05	<.05	<.05		<.05	. .	~;	7	 	-	
S-104	\mathbb{C}^3	<.05	<:05	<.05	<:05	<:05	<.05	<.05	<:05	·	~		-	<u>.</u>	
S-105	2	<.05	<.05	<.05	<:05	<.05	<.05		<.05	Ÿ	<u>.</u> ;	<u>.</u> .	-	<u>.</u>	<u>.</u> .
S-106	CI	<.05	<.05	<.05	<:05	<:05	<.05		<.05	~	~;	~ ~		<u>.</u>	×.
S-107	E5	<.05	<:05	<.05	<:05	<.05	<.05		<.05		<u>.</u>	 	~	<u>.</u> .	<u>.</u> .
S-108	BHSD	<:05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	·.	·.1	7	<u>~</u>	<u>.</u>	-
S-109	BH18I	<.05	<:05	<.05	<:05	<.05	.011e		<.05		7	~	<u>.</u> ;	~	·
S-110	BH32	<.05	<:05	<.05	<.05	<.05	<.05		<.05	·.	~	7	×.1	<u>.</u> .	<u>~</u>
S-111	BH11	<:05	<:05	<.05	<.05	<.05	<.05	<:05	<.05	<u>^</u>	<u>.</u> .	~	~	<u>.</u>	<u>.</u> ;
S-112	BH18D	<:05	<:05	<.05	<.05	<.05	<.05		<.05	<u>~</u>	<u>.</u> .	<u>.</u> .	<u>.</u> .	<u>.</u> .	<u>.</u> .
S-113	D70	<:05	<.05	<.05	<.05	<.05	<.05		<.05	.	<u></u>	-	\ <u>`</u>	-	.012e
S-114	BH16D	<:05	<:05	<.05	<.05	<.05	<.05		<.05	×.	 	<u></u>	<u>.</u> .	<u>.</u> .	.016e
S-115	BH16S	<:05	<.05	<.05	<.05	<.05	<.05		<.05	<u>^</u>		. .	- ;		-
S-116	D75	<:05	<.05	<.05	<.05	<.05	<.05		<.05	•		<u>.</u> .	·;	<u>.</u> .	<u>.</u> .
S-117	C12	<.05	<.05	<.05	<.05	<.05	<.05		<.05	 	-	<u>.</u>	 	- .	

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

Aroclor 1260 PCB, total (μg/L) (39508)	 ⊽	⊽	~	~	⊽	∇	⊽	⊽	⊽	∇	⊽	∇	~	$\overline{\lor}$	⊽	~	⊽	∇	$\overline{\vee}$	7	⊽	▽	▽	⊽	⊽	
Aroclor 1254 PCB, total (µg/L) (39504)	⊽	⊽		⊽	⊽	⊽	▽	⊽	⊽	⊽	⊽	⊽	.52e	∇	~	∇	⊽	∇	▽	⊽	⊽	⊽	⊽	⊽	7	
Aroclor 1248 PCB, total (µg/L) (39500)	⊽	⊽	⊽	⊽	⊽	⊽	$\overline{\vee}$	⊽	⊽	~	⊽	~	~	⊽	⊽	⊽	⊽	⊽	∇	7	⊽	⊽	$\overline{\lor}$	⊽	⊽	
Aroclor 1242 PCB, total (µg/L) (39496)		⊽	⊽	√	$\overline{\lor}$	~	∇	⊽	∇	$\overline{\lor}$	$\overline{\lor}$	∇	⊽	7	7	∇	7	7	∇	7	7	∇	∇	~	7	
Aroclor 1232 PCB, total (µg/L) (39492)	▽	⊽	⊽	⊽	∇	∇	∇	⊽	∇	∇	$\overline{\lor}$	⊽	⊽	▽	7	∇	$\overline{\lor}$	7	∇	7	7	7	$\overline{\lor}$	∇	7	,
Aroclor 1221 PCB, total (µg/L) (34988)	<2	\$	\$	\$	\$	\$	\$	\$	4	\$	7	4	7	7	7	7	4	4	4	4	4	\$	4	4	7	ç
Aroclor 1016 PCB, total (μg/L) (34671)	 	⊽	⊽	⊽	∇	⊽	$\overline{\vee}$	∇	$\overline{\lor}$	~	⊽	$\overline{\lor}$	⊽	~	$\overline{\lor}$	~	$\overline{\lor}$	∇	$\overline{\lor}$	$\overline{\vee}$	∇	▽	∇	7	$\overline{\lor}$,
Tox- aphene, total (μg/L) (39400)	\$	\$	۵	۵.	\$	\$	Δ.	\$	۵,	Δ.	۵	۵,	۵,	۵,	۵.	۵,	\$	Δ.	۵	\$	۵,	۵	\$	۵.	\$	Ļ
Gamma- Chlor- dane, total (µg/L) (39810)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	.021e	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	
Alpha chlor- dane, total (μg/L) (39348)	<0.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	.011e,p	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	
Endrin alde- hyde, total (μg/L) (82622)	<0.1	7	<u>.</u>	 	-	<u>~</u>	- .	<u>~</u>	~	~	- .	- -	.037e,p	<u>.</u> .	<u>.</u> .	<u>.</u> .	~	~	<u>~</u>	.01e,p	~	~	~	.014e,p	.015e,p	•
Endrin ketone, total (µg/L) (78008)	<0.1	~	<u>.</u> .	,	<u>~</u>	<u>.</u>	~	<u>~</u>	-	~ 	<u>~</u>	∵	.061e,p	 	~		<u>~</u>	 	~	<u>-</u> .	~	~	~	~	 -	,
Methoxy-chlor, total (µg/L) (39480)	<0.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5					<.5	<\$	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	Į,
p,p' DDT, total (μg/L) (39300)	0.013e,p	<u>.</u> .	<u>~</u>	<u>~</u>	~	~	<u>.</u> .	<u>.</u> .	<u>~</u>	~	~	~ 	.34p	<u>.</u>		<u>.</u> ;	 	<u>~</u>	×.	.18p	<u>.</u>	<u>~</u>	.012e,p	<u>.</u>	.034e,p	•
Well	BHIS	BH18S	BH2	BH25		BH19						MW-1														071110
Sample	S-090	S-091	-092	3-093	3-094	S-095	960-9	S-097	860-S	660-S	S-100	S-101	S-102	S-103	S-104	S-105	S-106	S-107	S-108	S-109	S-110	S-111	S-112	S-113	S-114	

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		Alpha benzene hexa-	Beta benzene hexa-	Delta benzene hexa-	! -	Hepta-	1	Hepta- chlor	Endo-	1	, d'd	: 1	Endo-	, d'd	Endo- sulfan
Sample number	Well	cnioride, total (μg/L) (39337)	cnioride, total (μg/L) (39338)	cnioride, total (μg/L) (34259)	Lindane, total (μg/L) (39340)	cnior, total (μg/L) (39410)	Aidrin, total (µg/L) (39330)	epoxide, total (μg/L) (39420)	Sunran I, total (μg/L) (34361)	total (µg/L) (39380)	DDE, total (µg/L) (39320)	Endrin, total (µg/L) (39390)	suiran II, total (µg/L) (34356)	DDD, total (μg/L) (39310)	sunrate, total (μg/L) (82623)
5-118	LK13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
-119	120	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<u>.</u> ;	×.	<u>~</u>	-	<u>.</u>	~
5-120	6SM	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~; '	\ \ '	~	 		~·
3-121	WS7	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~;		~	~	Ţ,	<u>.</u> .
3-122	WS2		1	1	;	:	;	1	ŀ	1	ŀ	ł	ŀ	1	ł
3-123	FILOI	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~·	Ÿ	~	~ 	_; '	~
3-124	WSS	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	~·	- .	.033e,p	~	-	<u>~</u>
3-125	FIL04	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	×.	~; `	~	.012e,p	.011e	~
3-126	F1LO5	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	_; _;	-	~	-; '	~;	-; v
S-127	FIL02	.01e,p	<.05	<.05	<.05	<.05	<.05	<.05	<.05	.01e,p	×.	~	- ;	-	Ÿ
3-128	FILO6	ţ	1	1	1	;	ł	ŀ	ŀ	ł	1	:	ł	;	1
3-129	C2	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	-	~; ``		_; '	 	Ÿ

Table 26. Concentrations of compounds containing pesticides or polychlorinated biphenyls in ground-water samples collected in the Calumet Region, Indiana and Illinois, June 1993—Continued

		4	Meth-		Endrin	Alpha-	Gamma-		Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor
		DDT, total	oxy- chlor,	Endrin ketone,	alde- hyde,	Chlor- dane,	Chlor- dane,	Tox- aphene,	1016 PCB,	1221 PCB,	1232 PCB,	1242 PCB,	1248 PCB,	1254 PCB,	1260 PCB,
Sample number	Well	(μg/L) (39300)	(μg/L) (39480)	μg/L) (78008)	μg/L) (μg/L) (82622)	(μg/L) (39348)	(μg/L) (39810)	μg/L) (39400)	(μg/L) (34671)	(μg/L) (34988)	total (µg/L) (39492)	total (µg/L) (39496)	total (µg/L) (39500)	total (μg/L) (39504)	total (µg/L) (39508)
S-118	LK13	<0.1	<0.5	<0.1	<0.1	<0.05	<0.05	\$	⊽	\$	▽	⊽	⊽	⊽	
S-119	120		<.5 5.5	<u>~</u>	<u>~</u>	<.05	<.05	٨	⊽	4	⊽	∇	$\overline{\lor}$	⊽	⊽
S-120	6SM	~ ~	<.>	<u>~</u>	~;	<.05	<.05	\$	⊽	4	⊽	$\overline{\lor}$	⊽	$\overline{\vee}$	~
S-121	WS7	<u>~</u>	<.5	<u>^</u> .	<u>~</u>	<.05	<.05	\$	⊽	7	⊽	⊽	⊽	$\overline{\vee}$	$\overline{\vee}$
S-122	WS2	:	;	;	;	1	ł	ŀ	;	ł	ł	ŀ	;	· :	;
S-123	FIL01	.27p	.01e,p	<u>~</u>		<.05	<.05	\$	⊽	4	$\overline{\vee}$	⊽	$\overline{\lor}$	⊽	⊽
S-124	WSS	×.	<.>	~	 	<.05	<.05	\$	⊽	4	⊽	∇	$\overline{\lor}$	$\overline{\lor}$	⊽
S-125	FIL04	<u>~</u>	<.5	 	~ ~	.015e	<.05	\$	∇	7	⊽	⊽	.17e,p		
S-126	FILO5	<u>~</u>	<.5	-	-	<.05	<.05	\$	⊽	\$	⊽	⊽	. ∵	~	⊽
S-127	FILO2	<u>~</u>	<.5	 		<.05	<.05	\$	⊽	\$	⊽	7	⊽	$\overline{\vee}$	⊽
S-128	FILO6	1	:	;	;	ı	;	1	1	1	ł	;	ł	ŀ	ŀ
S-129	C2	<u>~</u>	<.5	^, 	-	<.05	<.05	\$	~	7	∀	⊽	⊽	⊽	⊽

Appendix 3: Water-Quality Data 179